

Reservas Estratégicas e Estoques de Operação do Sistema Nacional de Estoques de Combustíveis

Grupo de Trabalho MME/ANP/EPE/Petrobras Brasília Dezembro de 2016

Grupo de Trabalho / SINEC

Coordenação:

Cláudio Akio Ishihara Luiz Carlos Lisboa Theodoro Marlon Arraes Jardim Leal Deivson Matos Timbó Edie Andreeto Júnior Leila Przytyk

Participantes:

Alexandre Camacho Rodrigues Jader Pires Vieira de Souza José Carlos Tigre Diogo Valério

Marcelo Castello Branco Cavalcanti Marisa Maia de Barros Rafael Moro da Mata

Arlindo Moreira Filho Carlos Felipe Guimarães Lodi Daniella Dalla Maestri Fernanda Cabral Santos Marcelo Cortês Fernandes

Participação especial:

MINISTÉRIO DOS TRANSPORTES, PORTOS E AVIAÇÃO CIVIL

Tetsu Koike

APRESENTAÇÃO

Em 2016, o Ministério de Minas e Energia (MME) coordenou a elaboração dos estudos acerca de "Reserva Estratégica" e "Estoques de Operação", referentes ao exercício deste ano, compreendidos no Sistema Nacional de Estoques de Combustíveis (SINEC), conforme estabelece a Lei nº 8.176, de 8 de fevereiro de 1991, e o Decreto nº 238, de 24 de outubro de 1991.

O SINEC tem por finalidade assegurar a normalidade do abastecimento nacional de petróleo, de seus combustíveis derivados, de etanol destinado para fins carburantes e de outros combustíveis líquidos carburantes.

A Portaria MME nº 250, de 3 de junho de 2014, criou o Grupo de Trabalho (GT), por prazo indeterminado, com o objetivo de analisar e identificar ações necessárias para subsidiar anualmente o Conselho Nacional de Política Energética (CNPE) sobre o adequado funcionamento do SINEC, a necessidade de formação de reservas estratégicas de petróleo e etanol carburante, bem como de estoques de operação de combustíveis.

O GT-SINEC é formado por representantes do MME, da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), da Empresa de Pesquisa Energética (EPE) e da Petróleo Brasileiro S.A. (Petrobras). Este ano, aprofundou-se a abordagem acerca das movimentações portuárias com a contribuição da Secretaria de Portos, do Ministério dos Transportes, Portos e Aviação Civil.

A finalidade deste documento é subsidiar o CNPE no cumprimento de sua obrigação legal de assegurar o adequado funcionamento do SINEC, e o Poder Executivo em sua tarefa de encaminhar ao Congresso Nacional, dentro de cada exercício financeiro, o Plano Anual de Estoques Estratégicos de Combustíveis para o exercício seguinte, integrando o projeto de lei de diretrizes orçamentárias.

SUMÁRIO

LISTA DE FIGURAS	
LISTA DE GRÁFICOS	ii
LISTA DE QUADROS	iv
LISTA DE TABELAS	iv
Introdução	
2 Base legal, definições e estudos precedentes	
2.1 Base legal atual	2
2.2 Discussões em curso sobre a necessidade de atualização da legislação	
2.3 Definição de "reserva estratégica" e de "estoques de operação"	5
2.4 Matriz Energética	<i>6</i>
2.4.1 A importância do petróleo	
2.5 Segurança Energética	9
2.5.1 Fundamentos da Gestão de Riscos Adotada	9
2.5.2 Os Componentes da Segurança Energética	13
2.5.3 Panorama atual e cenários para a indústria de P&G sob a ótica do mercado	13
2.5.4 Proteção da Cadeia de Abastecimento	17
2.6 Estudos precedentes	20
3 Reservas estratégicas	26
3.1 Petróleo	26
3.1.1 Histórico e risco de restrição e/ou interrupção no suprimento de petróleo	26
3.1.1.1 Eventos críticos externos	26
3.1.1.2 Eventos críticos internos	
3.1.2 Reserva estratégica de petróleo no mundo	33
3.1.2.1 Países da Organização para Cooperação e Desenvolvimento Econômico (OC	
Agência Internacional de Energia (AIE) e União Europeia (UE)	
3.1.2.2 Países dos BRICS (Rússia, Índia, China e África do Sul)	
3.1.2.3 Comparação de políticas de reservas estratégicas conforme nível de dependé	ência de
petróleo	
3.1.3 Cenário brasileiro	
3.1.3.1 Contexto histórico e evolução da produção de petróleo no Brasil	
3.1.3.2 Previsões de produção brasileira de petróleo 2016-2025	
3.1.3.3 Investimentos em E&P no Brasil 2016-2025	
3.1.3.4 Evolução das reservas provadas e da R/P do petróleo brasileiro	
3.1.3.5 Indicador de exportação líquida de petróleo	
3.2 Etanol carburante	
3.2.1 Histórico e risco de restrição e/ou interrupção no suprimento de etanol	
3.2.1.1 Eventos críticos externos	
3.2.1.2 Eventos críticos internos	
3.2.2 Cenário brasileiro	
3.2.2.1 Produção, estoques e dependência externa de etanol	
4 Análise da necessidade de reservas estratégicas no Brasil	
4.1 Petróleo	
4.1.1 Avaliação dos riscos e efeitos decorrentes de problemas no suprimento de petr	
4.2 Etanol	
4.2.1 Avaliação dos riscos e efeitos decorrentes de problemas no suprimento de etar	
5 Estoques de Operação	
5.1 Os estoques mínimos obrigatórios	74

5.2	Ações apontadas pelo GFL	74
5.3	Avaliação do Abastecimento em 2015	75
6	Infraestrutura Portuária para Petróleo e Derivados	78
6.1	Instalações Portuárias e Movimentação	78
6.2	Projeções de demanda e Capacidade Atual segundo o Plano Nacional de Logística	
Port	tuária – PNLP	79
7	Conclusões e recomendações	85
GL	OSSÁRIO	86

LISTA DE FIGURAS

Figura 1 – Processo de gestão de riscos	.10
Figura 2 – Processo de avaliação de riscos	
Figura 3 – Risco ambiental: legislação de licenciamento e fiscalização ambiental	
Figura 4 – Risco econômico: segurança jurídica e contratual	
Figura 5 – Riscos políticos: geopolítica	
Figura 6 – Riscos políticos: segurança de ativos, ataques terroristas, intervenções de forças	
armadas e pirataria	
Figura 7 – Risco econômico: presença do Estado	
Figura 8 – Risco econômico: corrupção	
Figura 9 – Risco regulatório	
Figura 10 – Projeção de melhora da atratividade de investimentos do Brasil	
Figura 11 – Os sete pontos críticos mais relevantes	
Figura 12 – Estreito de Hormuz	
Figura 13 – Estreito de Bósforo	
Figura 14 – Composição da Agência Internacional de Energia	
Figura 15 – Sistema de resposta a emergências da AIE	
Figura 16 – Bacias efetivas nas áreas da União e UP em áreas contratadas com recursos	
descobertos (RT e RC) e não descobertos (RND-E) convencionais segundo os estudos do	
ciclo 2016-2025	.48
Figura 17 – Distribuição das usinas produtoras de etanol no Brasil	
Figura 18 – Riscos à disponibilidade de petróleo para o suprimento do parque de refino do	
País	.68
Figura 19 – Capacidade atual e demanda projetada para 2042 por <i>cluster</i> portuário: granel	
líquido	.82
LICEA DE CDÁRICOS	
LISTA DE GRÁFICOS	
Gráfico 1 – Participação na OIE por energético	7
Gráfico 2 – Dependência externa total de energia	8
Gráfico 3 – Dependência externa de petróleo e derivados	8
Gráfico 4 — Dependência externa energética versus percentual na oferta energética mundial	9
Gráfico 5 – Frequência de eventos classificados pelo tempo de interrupção	
Gráfico 6 – Frequência de eventos classificados pela deficiência média no fornecimento em	1
volumes diários em volumes diários	
Gráfico 7 – Frequência de eventos classificados pela deficiência média no fornecimento em	1
relação à produção mundial	
Gráfico 8 – Frequência e magnitude dos eventos críticos internos	
Gráfico 9 – Gráfico de controle dos eventos críticos internos (medidas individuais)	.33
Gráfico 10 – Gráfico de controle dos eventos críticos internos (amplitudes móveis)	.33
Gráfico 11 – Medidas individuais dos eventos críticos externos	
Gráfico 12 – Amplitudes dos eventos críticos externos	
Gráfico 13 – Evolução da produção brasileira de petróleo 1954-2015	
Gráfico 14 – Previsão da produção brasileira de petróleo 2016-2025	
Gráfico 15 – Evolução das reservas provadas e da R/P do petróleo brasileiro 2006-2025	
Gráfico 16 – Evolução da exportação líquida de petróleo no Brasil 2006-2025	
Gráfico 17 — Evolução da participação do petróleo nacional na carga processada das refinar	riac
1970-2015	

Grafico 18 – Evolução da participação do petroleo nacional na carga processada das refinal 2016-2025	
Gráfico 19 – Participação do etanol na matriz de combustíveis para veículos ciclo Otto	
Gráfico 20 – Demanda mensal para o mercado ciclo Otto (2006-2016) (m³ de gasolina	
equivalente)	. 64
Gráfico 21 – Evolução da variação da demanda por combustíveis para o mercado ciclo Otto	
(2007-2015)	
Gráfico 22 – Evolução recente do mercado de etanol combustível no Brasil	.65
Gráfico 23 – Importação e exportação de etanol (1997-2015)	.66
Gráfico 24 – Evolução recente da entrada em operação das novas unidades e unidades	
fechadas ou em recuperação judicial	
Gráfico 25 – Movimentação portuária de petróleo e derivados em 2015	
Gráfico 26 – Representatividade dos produtos de granel líquido combustível em 2014	
Gráfico 27 – Movimentação de granel líquido combustível: observado (2014) e projetado	
(2042)	.81
LISTA DE QUADROS	
Quadro 1 – Mandatos nacionais e locais (provinciais) para etanol e biodiesel vigentes	.61
Quadro 2 – Matriz de probabilidade e impacto	68
Quadro 3 – Resultado da Análise Qualitativa de Riscos	.69
Quadro 4 – Participação dos portos e terminais na movimentação de petróleo e derivados	79
Quadro 5 – Variações percentuais de demanda, por cluster portuário	.81
I ICOLA DE CADELAC	
LISTA DE TABELAS	
Tabela 1 – Deficiências no fornecimento de petróleo desde 1956	.28
Tabela 2 – Contingências internas e impactos sobre oferta, entre 1986 e 2001	
Tabela 3 – Contingências internas e impactos sobre oferta, desde 2002	.32
Tabela 4 – Maiores economias mundiais e sua situação quanto à exportação líquida de	
petróleo e formação de reservas estratégicas de petróleo - REP	
Tabela 5 – Portarias do CNP com fixação do percentual de mistura vigente após o lançame	
do Proálcool e até a adoção de percentual de 20% no território nacional	
Tabela 6 – Produção potencial e demanda estimada de petróleo no Brasil	
Tabela 7 – Estoques de gasolina A nos distribuidores (mil m³)	
Tabela 8 – Estoques de óleo diesel A de distribuidores (m³)	
Tabela 9 – Definição dos <i>Clusters</i> Portuários	.80

Introdução

Ao longo de 2016, o GT-SINEC, criado pela Portaria MME nº 250, de 3 de junho de 2014, elaborou o presente relatório organizado em 7 capítulos, que incluem fundamentações, análises, conclusões e recomendações, para subsidiar o CNPE no cumprimento de sua obrigação legal de assegurar o adequado funcionamento do SINEC. A partir dos requisitos estabelecidos pela Lei nº 8.176, de 8 de fevereiro de 1991, pelo Decreto nº 238, de 24 de outubro de 1991 e pela Lei nº 9.478, de 6 de agosto de 1997, o GT-SINEC estudou referências nacionais e internacionais, observando históricos e tendências relacionados ao consumo, produção, comércio internacional, movimentação e armazenagem de petróleo e seus derivados e de etanol carburante.

O capítulo 2 apresenta a base legal referente ao assunto, definições de reserva estratégica e estoques de operação, a importância do petróleo na matriz energética nacional, além de estudos precedentes ao início das atividades do GT-SINEC. Também são relacionados aspectos da segurança energética, suas componentes e os fatores de risco a serem considerados.

O capítulo 3 trata de reserva estratégica de petróleo e etanol carburante, dos principais eventos críticos externos e internos que levaram ou podem levar à restrição e/ou interrupção de suprimento desses produtos, além do panorama brasileiro de sua produção, estoques e dependência externa. Apresenta-se uma avaliação estatística, considerando os eventos críticos internos e externos ocorridos e suas magnitudes, sob a ótica de máxima deficiência ou perda de produção, com intervalos de confiança de 95% de probabilidade de ocorrência.

O capítulo 4 traz a análise da necessidade de formação de reservas estratégicas de petróleo e etanol carburante, por meio de uma abordagem qualitativa de riscos. A Análise Qualitativa dos Riscos (AQR) aponta para baixa relevância para risco de descontinuidade ou restrição no suprimento generalizada com duração superior a 30 dias nos fluxos de suprimento de petróleo – produzido ou importado – para mais de uma refinaria brasileira. Também é apontado baixo risco de descontinuidade na cadeia de suprimento.

O capítulo 5 contempla os estoques de operação, tratados em estudos realizados pela ANP desde 2013, resultando em resoluções que estabelecem estoques mínimos operacionais para gás liquefeito de petróleo (GLP), gasolina, óleo diesel e querosene de aviação (QAV). Quanto ao etanol, a leitura é de que os estoques regulatórios praticados pelo setor são suficientes para sua adequada operação.

No capítulo 6, foi realizada a avaliação da infraestrutura portuária para movimentação de derivados à luz do Plano Nacional de Logística Portuária (PNLP) e seus planos mestres, elaborados, à época, pela Secretaria de Portos da Presidência da República, que teve suas competências transferidas para o Ministério dos Transportes, Portos e Aviação Civil pela Lei nº 13.341, de 29 de setembro de 2016. Foi avaliado o panorama da infraestrutura portuária e sua capacidade de movimentação, bem como os planos para sua expansão.

Por fim, as análises quanto à pertinência de atualização dos marcos legais foram concluídas. Nesse sentido, a conveniência e a oportunidade para o encaminhamento das propostas ao Congresso Nacional serão tratadas no âmbito da Iniciativa Combustível #Brasil, coordenada por ANP, EPE e MME, que trata do redesenho do abastecimento nacional de combustíveis, em face do reposicionamento da Petrobras.

2 Base legal, definições e estudos precedentes

Este capítulo contempla a base legal atual pertinente ao assunto (Lei nº 8.176/1991 e Decreto nº 238/1991). Também integram o rol de assuntos as discussões em curso sobre a necessidade de atualização da legislação e a Portaria MME nº 250, de 3 de junho de 2014, que criou o grupo de trabalho e das discussões em curso.

O texto ainda retrata as definições conceituais a respeito de reservas estratégicas e estoques de operação. Além disso, é abordada a importância do petróleo na matriz energética nacional, além dos aspectos relacionados à segurança energética e os estudos precedentes que trataram do mesmo assunto e que, portanto, foram utilizados como referência.

2.1 Base legal atual

A Lei nº 8.176/1991 "define os crimes contra a ordem econômica e cria o Sistema de Estoques de Combustíveis".

Em seu artigo 4º, a referida Lei estabelece a instituição do SINEC e define as seguintes atribuições ao Poder Executivo:

(...)

Art. 4° Fica instituído o Sistema Nacional de Estoques de Combustíveis.

§ 1º O Poder Executivo encaminhará ao Congresso Nacional, dentro de cada exercício financeiro, o Plano Anual de Estoques Estratégicos de Combustíveis para o exercício seguinte, do qual constarão as fontes de recursos financeiros necessários a sua manutenção.

§ 2° O Poder Executivo estabelecerá, no prazo de sessenta dias as normas que regulamentarão o Sistema Nacional de Estoques de Combustíveis e o Plano Anual de Estoques Estratégicos de Combustíveis.

(...)

Por sua vez, o Decreto nº 238/1991 "dispõe sobre o Sistema Nacional de Estoques de Combustíveis e dá outras providências".

O referido Decreto regulamentou a Lei nº 8.176/1991, na medida em que definiu, em seu artigo 2º, que o SINEC compreenderá:

(...)

Art. 2º O SINEC compreenderá:

- I a "Reserva Estratégica", destinada a assegurar o suprimento de petróleo bruto e de álcool para fins carburantes quando do surgimento de contingências que afetem de forma grave a oferta interna ou externa desses produtos;
- II os Estoques de Operação, destinados a garantir a normalidade do abastecimento interno de combustíveis derivados de petróleo, bem assim de álcool etílico, anidro e hidratado, e outros

combustíveis líquidos carburantes, em face de ocorrências que ocasionarem interrupção nos fluxos de suprimento e escoamento dos referidos combustíveis.

(...)

O Decreto ainda avançou na regulamentação, definindo, nos artigos 2º e 3º, que:

(...)

§ 1º Os produtos destinados à Reserva Estratégica serão adquiridos e mantidos pela União e utilizados mediante prévia autorização do Presidente da República, por proposta do Ministro da Infra-Estrutura.

§ 2º A Reserva Estratégica será regulada em ato do Ministro da Infra-Estrutura e os "Estoques de Operação", em ato do Diretor do Departamento Nacional de Combustíveis.

Art. 3º O Plano Anual de Estoques Estratégicos de Combustíveis, a ser encaminhado anualmente ao Congresso Nacional, integrará o projeto de lei de diretrizes orçamentárias e compreenderá as metas e prioridades do SINEC, incluindo os recursos financeiros para a manutenção da "Reserva Estratégica".

(...)

Dessa forma, por força da Lei, torna-se necessário que, anualmente, o Plano Anual de Estoques Estratégicos de Combustíveis seja encaminhado ao Congresso Nacional, contendo:

- a) Metas do SINEC;
- b) Prioridades do SINEC;
- c) Recursos financeiros para a manutenção da Reserva Estratégica.

O projeto de Lei de Diretrizes Orçamentárias (LDO) deve ser encaminhado pelo Presidente da República, nos termos da Constituição Federal, em até 15 de abril ou oito meses e meio antes do encerramento do exercício financeiro. Posto que a LDO estabelece, a partir dos programas do Plano Plurianual (PPA), as prioridades para o ano seguinte e orienta a elaboração da Lei Orçamentária Anual (LOA), o Congresso, por sua vez, deve enviar para sanção o Projeto de LDO aprovado até o encerramento do primeiro período da sessão legislativa (ADCT, art. 35, § 2°, inciso II).

Em complementação ao que estabelece a Lei nº 8.176/1991 e o Decreto nº 238/1991, o inciso V do art. 2º da Lei nº 9.478, de 6 de agosto de 1997, define como competência do CNPE assegurar o adequado funcionamento do SINEC e o cumprimento do Plano Anual de Estoques Estratégicos de Combustíveis. Dessa forma, cabe ao Poder Executivo a responsabilidade pelo encaminhamento anual do Plano Anual de Estoques Estratégicos de Combustíveis ao Congresso Nacional.

Em 2002, o Comitê Técnico 4 – Sistema Nacional de Estoques de Combustíveis (CT-04) do CNPE elaborou estudo no qual recomendava ao Conselho que o Brasil não constituísse estoques estratégicos para petróleo, GLP, gasolina A, óleo diesel A, QAV e óleo combustível. Desde então, a atuação do MME passou a ser a de propor políticas para garantir quantidade e qualidade de combustíveis e derivados adequadas, sem a necessidade de se constituir reservas estratégicas, tendo em conta o cenário de crescente produção de petróleo no Brasil¹. Desde 2013, os estoques de operação são regulamentados por resoluções da ANP.

2.2 Discussões em curso sobre a necessidade de atualização da legislação

O relatório do GT-SINEC de 2013² consignou em seu texto a necessidade de atualização ou complementação da regulamentação da Lei nº 8.176/1991.

Isso porque, ao longo do período que se estende da publicação da mencionada Lei e do Decreto nº 238, de 1991 até a presente data, muitas mudanças ocorreram no mercado de combustíveis, como, por exemplo, o advento da tecnologia *flex-fuel* que reduziu o risco de desabastecimento da frota ciclo Otto, bem como algumas terminologias legais utilizadas nestes atos que ficaram desatualizadas, como, por exemplo, "álcool para fins carburantes", que atualmente recebe a denominação de "etanol combustível". Além disso, outras leis importantes foram editadas e alteraram os procedimentos de atuação do Governo em relação às compras, alienações, serviços e obras (Lei nº 8.666, de 21 de junho de 1993 e Lei nº 101, de 4 de maio de 2000).

Ademais, a Portaria MME nº 250, de 3 de junho de 2014, que criou o Grupo de Trabalho, estabelece as atribuições do mesmo, conforme abaixo:

(...)

Art. 2º O Grupo de Trabalho terá as seguintes atribuições, além de outras que lhe forem delegadas:

I - avaliar as medidas necessárias para o adequado funcionamento do SINEC;

II - propor as metas do SINEC;

III - propor as prioridades do SINEC;

IV - propor, caso seja necessário, a destinação de recursos financeiros para a manutenção das Reserva Estratégica de Petróleo e Etanol;

V - propor atualização da legislação e, caso seja necessário, sugerir o estabelecimento de marcos regulatórios aplicáveis ao SINEC;

VI - elaborar relatório técnico, anual, para apreciação do CNPE.

(...)

Em decorrência do inciso V do artigo 2º dessa Portaria, o Departamento de Combustíveis Derivados de Petróleo (DCDP), unidade subordinada à Secretaria de Petróleo, Gás Natural e Biocombustíveis (SPG) do MME, instruiu o Processo nº 48000.001986/2014-75 com a Nota Técnica nº 19/2014-DCDP/SPG-MME, que tem por objetivo de atender à recomendação aprovada pelo CNPE de atualizar a legislação.

Por meio da Nota nº 273/2014/CONJUR-MME/CGU/AGU, a Advocacia Geral da União pronunciou-se de forma favorável ao intento de atualização da legislação, e não apresentou óbices jurídicos à proposta de alteração legislativa e à edição de novo decreto. Após diversas reuniões, as minutas foram encaminhadas ao Gabinete do Sr. Ministro do MME em 20/08/2015 para apreciação, sendo incorporadas as novas sugestões decorrentes aos textos das propostas de alteração da Lei nº 8.176/1991 e do Decreto nº 238/1991.

Não obstante, processo mais abrangente que aborda a proposta do GT-SINEC de alteração da legislação encontra-se em desenvolvimento. Trata-se da Iniciativa Combustível #Brasil, coordenado por ANP, EPE e MME, que tem por objetivo o

redesenho do abastecimento nacional de combustíveis, em face da anunciada proposta de reposicionamento da Petrobras. Foram realizadas cerca de duas dezenas de reuniões com agentes da cadeia, onde se apurou informações e sugestões com o objetivo de elaborar diagnóstico do novo cenário e de propor medidas com vistas a garantir o abastecimento e fluxo adequado de combustíveis. A expectativa é pela conveniência e oportunidade de encaminhamento das ações e medidas, tais como propostas de ajustes de atos normativos infralegais às instituições competentes e as de alterações do arcabouço legal ao Congresso Nacional, de forma conjunta, Governo e iniciativa privada.

2.3 Definição de "reserva estratégica" e de "estoques de operação"

Nas maiores economias mundiais, a formação de reservas estratégicas visa mitigar os efeitos de eventuais restrições ou interrupções no suprimento de petróleo. Esses se relacionam de forma negativa com a segurança do país, podendo causar restrições ao consumo e afetar a economia como um todo.

A segurança no suprimento de petróleo tem sido o cerne na missão da Agência Internacional de Energia (AIE), desde a sua criação, em 1974. Na visão da AIE, a ameaça de restrição ou interrupção no suprimento abrange fatores de risco naturais, econômicos e políticos. A origem do risco tanto pode ser externa (dependência externa, instabilidade política nos países fornecedores, diversidade de fornecedores, etc.) quanto doméstica (volatilidade da produção nacional, concentração da produção, relevância da produção offshore, infraestrutura de armazenagem e movimentação, disponibilidade de energia, entre outros). Assim, a imposição de estoques pela AIE, em conjunto com medidas de contenção da demanda doméstica, têm como objetivo resguardar a segurança energética de seus membros no caso de ameaça de restrição ou interrupção no suprimento de petróleo.

A disponibilidade de estoques emergenciais de petróleo, no caso de restrições ou interrupções no suprimento, foi tratada como elemento essencial para a segurança pública dos Estados Membros da União Europeia (UE). Por meio da *Council Directive 2009/119/EC*, a UE impôs obrigação aos Estados Membros de manter estoques mínimos de petróleo e/ou derivados, como medida de prevenção contra restrições ou interrupções (repentinas, relevantes e duradouras) no suprimento global, que impactariam de forma negativa na economia da UE, principalmente em relação aos segmentos de transporte e industrial químico.

Alguns países que não integram a UE nem a AIE e que não são exportadores líquidos de petróleo, como China e Índia, estão constituindo reservas de petróleo como prevenção a potenciais choques em sua economia causados por restrição ou interrupção no suprimento do produto.

A terminologia utilizada para os estoques constituídos com o propósito de proteção contra restrição ou interrupção no suprimento é variada, abrangendo os termos: estoques emergenciais, estoques estratégicos, reservas estratégicas, estoques específicos e estoques de operação.

No caso brasileiro, a legislação optou pelas denominações "reserva estratégica" e "estoques de operação", cujos propósitos são distintos. Reserva estratégica (que também poderia ser denominada "estoque estratégico") tem a característica de um ativo constituído por prazo indeterminado, indisponível para qualquer utilização que não seja a prevenção quanto à restrição ou interrupção (repentina, relevante e duradoura) no

suprimento de petróleo ou etanol. De acordo com a legislação, a reserva estratégica deve ser adquirida e mantida por recursos financeiros da União e só pode ser utilizada com autorização da Presidência da República.

Por sua vez, os estoques de operação, dentro dos quais estão os estoques de segurança, têm como objetivo a garantia da continuidade da atividade econômica de cada agente inserido nos fluxos logísticos de produção, transporte e armazenagem de combustíveis no território nacional. Devido a essa característica, os estoques de operação são custeados com recursos dos agentes econômicos.

2.4 Matriz Energética

As escolhas e realizações da política energética do Brasil estão à altura dos desafios energéticos mais urgentes do mundo. Um esforço concentrado fez com que o acesso à eletricidade seja praticamente universal em todo o país: atualmente, 99,6% da população possui acesso à eletricidade, o que demanda uma rápida expansão do sistema energético.

A determinação inicial brasileira para o desenvolvimento de alternativas aos combustíveis fósseis fez com que fossem explorados o grande potencial hidroelétrico e a alternativa de base agrícola. As diretrizes para uma redução da dependência externa de petróleo e derivados resultaram em escolhas que levaram o Brasil a se destacar como uma economia pouco intensiva em carbono. A demanda total de energia primária mais que dobrou no Brasil desde o início dos anos 1990, em decorrência do crescimento econômico e do surgimento de uma nova classe média, retratados de maneira explícita na demanda no setor de transporte e no consumo de energia elétrica.

Apesar da eminente posição de destaque do Brasil em questões de segurança energética, sustentabilidade e a proximidade da universalização do acesso à eletricidade, a formulação de suas políticas permanece como um desafio considerável. A autossuficiência em recursos energéticos, embora mitigue os riscos externos, não garante confiabilidade no suprimento a custos acessíveis. Embora os recursos renováveis sejam abundantes, há limitações — incluindo restrições sociais e ambientais — acerca da manutenção ou aumento de sua participação total no suprimento energético. Esforços para a conservação da biodiversidade, políticas de uso do solo e de gestão de recursos hídricos estão sobrepostas com as perspectivas do setor energético. Os riscos à resiliência do sistema de geração hidráulica, tais como as mudanças nos padrões hidrológicos e as vazões de entrada das hidrelétricas, poderiam ser exacerbados por decréscimos dos volumes armazenados nos reservatórios e mudanças climáticas.

Mais recentemente, o Brasil vem se consolidando como uma das forças mundiais no setor de petróleo. Nas últimas três décadas, a Petrobras tem realizado uma série de grandes descobertas *offshore*, inicialmente na bacia de Campos, tornando-se especialista e líder mundial de tecnologia de produção de petróleo em águas profundas. Com a descoberta das imensas reservas do pré-sal, em 2006, as perspectivas brasileiras nesse setor ganharam forte impulso.

Com respeito à participação de outras fontes na produção de energia, o incremento de usinas geradoras de energia elétrica que utilizam principalmente recursos como gás natural, energia eólica e bioenergia vem crescendo desde o início da década de 2000. Um sistema de leilões de contrato fornece um mecanismo capaz de antecipar investimentos

em nova produção e capacidade de transmissão, bem como estimular a diversificação da matriz energética.

Os biocombustíveis atualmente atendem 20,7% da demanda no setor de transporte, em que as tecnologias *flex-fuel* representam cerca de 90% das vendas de novos veículos leves.

2.4.1 A importância do petróleo

A importância do petróleo na matriz energética nacional torna-se evidente quando se analisa a evolução da sua participação na composição da oferta interna de energia (OIE) ao longo do tempo. O petróleo é o insumo de maior participação na matriz (37,3%), posição ocupada desde o ano de 1973. O Gráfico 1 apresenta a evolução da OIE total entre os anos de 1970 e 2015, evidenciando a contribuição percentual de cada energético. O Brasil, que apresentava OIE de 66.946 mil toneladas equivalentes de petróleo (tep) em 1970, alcançou 299.211 mil tep no ano de 2015, equivalente a uma taxa média de crescimento anual de 3,38% a.a.

Importante destacar que um único energético apresentou redução no valor absoluto de demanda: a lenha. Em 1970, contribuía com 31.852 mil tep (47,6%) e passou para 24.519 mil tep em 2015 (8,2%). A ordem de relevância dos energéticos para a OIE brasileira, após o petróleo e derivados, é a seguinte: derivados da cana-de-açúcar (16,9%), gás natural (13,7%), hidroeletricidade (11,3%), lenha e carvão vegetal (8,2%), carvão mineral e derivados (5,9%), outras renováveis (4,7%), nuclear (1,3%) e outras não renováveis (0,6%).

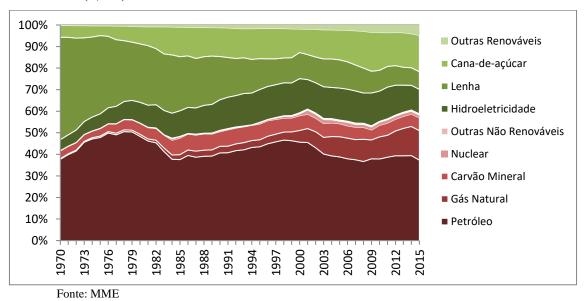


Gráfico 1 - Participação na OIE por energético

Por ser o energético de maior consumo, o petróleo influencia diretamente o comportamento da matriz energética nacional, bem como a dependência externa de energia, o que pode ser ratificado pela similaridade dos gráficos a seguir, que retratam o comportamento da dependência externa brasileira, tanto para a energia total quanto para petróleo e derivados. O ápice da dependência externa do petróleo no Brasil ocorreu em 1979, quando se importava 85% de nossa demanda. Não por acaso, nesse mesmo ano a dependência externa total alcançou seu maior valor nessa série histórica, quando a importação de energia superou 45% da demanda nacional. Tal comportamento é

percebido a seguir, onde se apresenta a dependência externa energética total (Gráfico 2) e de petróleo e derivados (Gráfico 3).

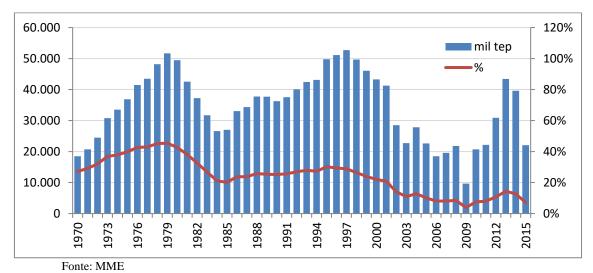


Gráfico 2 – Dependência externa total de energia

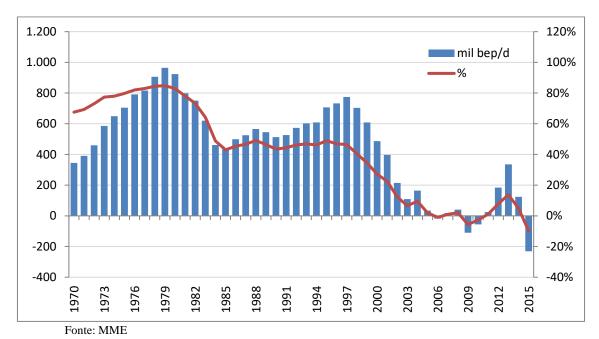
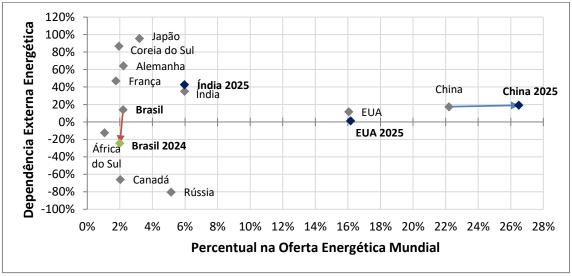



Gráfico 3 – Dependência externa de petróleo e derivados

Cabe um comentário específico sobre o comportamento da dependência externa de petróleo e derivados no ano de 2015, que passou de uma importação líquida de 124 mil bpd no anterior para uma exportação líquida de 230 mil bpd. Os fatores que contribuíram para essa variação foram a maior produção nacional de petróleo (+7,7%) e a menor demanda por derivados de petróleo (-7,3%), sendo esta última decorrente da retração econômica (-3,8%) e do crescimento do mercado de etanol hidratado (+37,5%).

Como há perspectiva de que o Brasil se consolide na posição de exportador líquido de petróleo bruto, é possível que, em alguns anos, a produção total de energia supere o consumo final energético. É o que mostra o Gráfico 4, onde se observa a posição de cada país com relação à sua dependência externa energética e o peso de sua demanda no mercado mundial. O Plano Decenal de Expansão de Energia 2024 (PDE 2024) projeta para o Brasil a condição de exportar o equivalente a 24% de sua produção em 2024.

Apresenta-se, ainda, projeção desenvolvida pela BPⁱ para China, EUA e Índia no ano de 2025.

Fonte: AIE, BP e EPE. Elaboração: MME.

Gráfico 4 - Dependência externa energética versus percentual na oferta energética mundial

Cabe destacar, por fim, o papel essencial que o petróleo possui para setores vitais à economia nacional: mais de 77% da energia consumida com transporte tem origem nos derivados de petróleo. Como outros exemplos, apenas o óleo diesel responde por mais de 55% da energia consumida na agropecuária e o GLP supre mais de 26% da energia consumida nas residências³.

2.5 Segurança Energética⁴

Este item trata da abordagem mais recente acerca da segurança energética, das vulnerabilidades que trazem riscos aos sistemas energéticos. Apresenta inicialmente os fundamentos da gestão de risco adotada e os quatro componentes usuais da segurança energética: segurança física, acesso à energia, sistemas de respostas a emergências e ambiente de negócios adequado. Contém ainda um relato sobre gerenciamento e avaliação de riscos, perspectivas e cenários da indústria de P&G no Brasil. Por fim, tece considerações sobre a proteção da cadeia de abastecimento global.

2.5.1 Fundamentos da Gestão de Riscos Adotada

Incertezas e riscos relacionam-se com o futuro, cuja previsão é passível de erros. O efeito cumulativo de respostas a riscos, que atendem a diversos objetivos, e o caráter multifuncional dos controles, reduzem os riscos, mas não os eliminam.

Os controles do setor, feitos por meio de regulação, devem ser registrados por relatórios periódicos e de fácil acesso, pois são ferramentas essenciais à análise de risco. Constituem um registro formal dos eventos a serem classificados na avaliação necessária para a tomada de decisão.

ⁱ Energy Outlook 2035, British Petroleum.

Os eventos a serem avaliados precisam ser sopesados em um contexto onde seja possível a avaliação não somente dos que provocam impactos negativos (riscos ou ameaças), mas dos que impactam positivamente (oportunidades). Os riscos e oportunidades podem ocorrer e alcançar, positivamente ou negativamente, tanto o domínio das Reservas Estratégicas quanto dos estoques operacionais.

As respostas possíveis aos riscos são: evitar, aceitar, reduzir ou compartilhar. Esse conjunto de informações tem que estar disponível à autoridade competente quando da decisão. Nesse momento, o controle (regulação) novamente assume papel fundamental, na medida da necessidade da implementação de políticas e procedimentos estabelecidos para assegurar que as respostas aos riscos sejam executadas com eficácia.

Outro aspecto fundamental a ser considerado é a forma e o prazo em que as informações são identificadas, colhidas e comunicadas. Informações tempestivas e acessíveis a todos os níveis hierárquicos são essenciais para a correta resposta ao risco. Dada essa necessidade, seu fluxo deve ser constante, em todos os sentidos, e não eventual.

Atividades contínuas de monitoramento são necessárias para que se possa reagir tempestivamente e adequar procedimentos conforme as circunstâncias. Assim, quando verificada necessidade de flexibilização ou atualização de algum procedimento para fazer frente a uma contingência, tal ação terá por base os resultados de avaliações periódicas consolidadas.

A abordagem realizada na análise qualitativa de riscos (AQR) segue os preceitos da ABNT NBR ISO 31000:2009. Foram tabulados eventos críticos internos e externos relativos aos suprimentos de petróleo. Quanto aos derivados, o estudo se valeu dos trabalhos da ANP na coordenação do Grupo de Fluxos Logísticos de Produção, Transporte e Armazenagem de Combustíveis (GFL), que mapearam e estabeleceram planos de mitigação de riscos.

Conforme a referida norma, na terminologia de gestão de riscos, a palavra "probabilidade" é utilizada para referir-se à chance de algo acontecer, não importando se definida, medida ou determinada, objetiva ou subjetivamente, qualitativa ou quantitativamente, ou se descrita utilizando termos gerais ou matemáticos (tal como probabilidade ou frequência durante um determinado período de tempo).

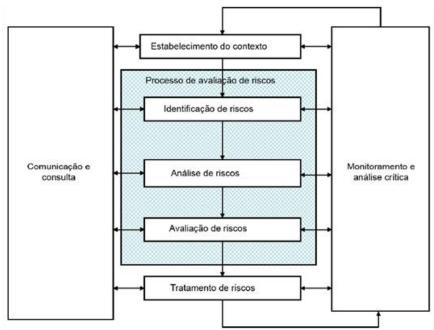
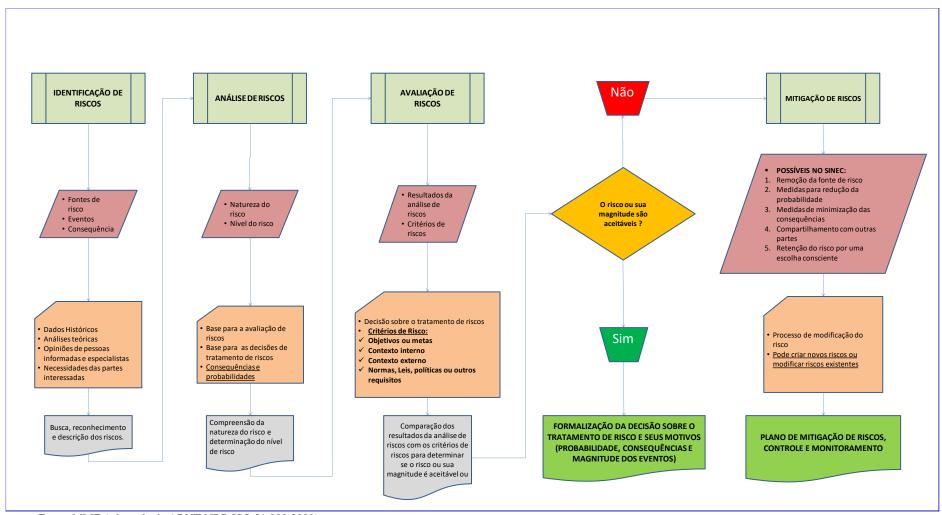


Figura 1 – Processo de gestão de riscos


A comunicação e a consulta, inerente ao processo de gestão de riscos, é parte integrante dos trabalhos do SINEC. Isto porque, na medida em que o relatório subsidia decisões do CNPE, as diversas partes representantes da sociedade e integrantes desse Conselho têm em mãos o resultado de um trabalho interinstitucional e conclusivo, relativo ao panorama do abastecimento de petróleo, etanol e derivados. Assim a participação de representantes de diversas instituições (ANP, MME, EPE e Petrobras), somada ao encaminhamento do relatório ao CNPE encerra o ciclo comunicação e consulta a contento.

O estabelecimento do contexto interno e externo é realizado com o registro de um histórico e tabulação dos fatores de risco de restrição ou interrupção no suprimento de petróleo, de etanol e de derivados. Na sequência, a identificação dos riscos. A definição dos critérios de risco e os níveis (magnitude ou combinação de suas consequências e probabilidades) são derivados de requisitos legais e regulatórios, como no caso dos derivados, por exemplo, onde estão estabelecidos estoques mínimos de operação, visando garantir a continuidade de fluxos. Quanto ao petróleo, a avaliação é centrada na dependência externa avaliada pela relação entre a importação e a movimentação global de petróleo somada aos históricos de eventos críticos internos e externos.

A identificação, análise e avaliação de riscos foram realizadas por meio de discussões realizadas nas reuniões. Por estarem identificados, *a priori*, em decorrência de estudos precedentes, a etapa de identificação consistiu na atualização e validação do rol de eventos críticos, fontes de riscos, seus impactos, ameaças e oportunidades que elencaram o estudo. A análise de riscos é qualitativa, associada a indicadores estatísticos provenientes da avaliação do histórico de eventos críticos que fundamentam as constatações do estudo.

O conteúdo permitiu uma avaliação de riscos, até o momento, pautada pela segmentação do problema em um binômio composto por um risco severo, mas de baixa probabilidade. Assim, anualmente esse binômio é reavaliado com os novos cenários de oferta e demanda para que se possa decidir pelo adequado tratamento de risco. No rol dos tratamentos enquadram-se: evitar o risco, remover a fonte de risco (descontinuando a atividade), reduzir a probabilidade de sua ocorrência, minimizar seus efeitos, compartilhar com outras partes interessadas ou simplesmente retê-lo, numa decisão consciente e bem embasada.

No tocante ao Monitoramento, os trabalhos são focados em obtenção de informações para melhorar o processo de avaliação dos riscos, a constante análise dos eventos por meio de relatórios e boletins mensalmente expedidos pelo MME, que permitem a detecção de mudanças no contexto interno e externo, bem como a identificação de riscos emergentes.

Fonte: MME (adaptado de ABNT NBR ISO 31.000:2009)

Figura 2 – Processo de avaliação de riscos

2.5.2 Os Componentes da Segurança Energética

A definição usual de segurança energética é: disponibilidade de suprimento suficiente a preços acessíveis. Entretanto, outros componentes como (i) segurança física, (ii) acesso à energia, (iii) sistema de respostas a emergências e, por fim, (iv) um ambiente de negócios que propicie e encoraje investimentos em infraestrutura devem ser considerados.

(i) Segurança Física

A segurança física consiste em proteger ativos, infraestrutura, cadeias de abastecimento e rotas de comércio, bem como fazer provisão para reposições e substituições rápidas quando necessário.

(ii) Acesso à Energia

O acesso à energia consiste na habilidade para desenvolver e adquirir suprimentos de energia - fisicamente, contratualmente e comercialmente.

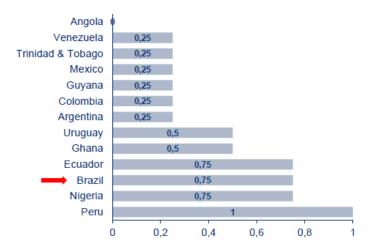
(iii) Sistema de Respostas a Emergências

O sistema de respostas a emergências deve ser composto de políticas nacionais e instituições internacionais projetadas para responder de forma coordenada a perturbações, deslocamentos e emergências, bem como ajudar a manter o fluxo constante de suprimentos.

(iv) Ambiente de Negócios

O ambiente de negócios refere-se ao longo prazo e constitui-se, fundamentalmente, de investimento, visto que a segurança energética requer políticas e um clima de negócios que promovam os investimentos e o desenvolvimento para garantir que os suprimentos e infraestrutura adequados estejam disponíveis, de forma oportuna, no futuro.

Países importadores de petróleo abordam a questão em termos de segurança do abastecimento. Por outro lado, países exportadores preocupam-se com a "segurança da demanda" para as suas exportações de petróleo e gás, das quais dependem para gerar crescimento econômico, grande parte das receitas do governo, e para manter a estabilidade social. Para os exportadores é importante saber o que os mercados vão demandar, para que possam planejar seus orçamentos e justificar níveis futuros de investimento.


2.5.3 Panorama atual e cenários para a indústria de P&G sob a ótica do mercado

Em palestra proferida na Conferência Plenária de abertura da Rio Pipeline 2015, RoseAnne Franco, Coordenadora de Gerenciamento de Risco da Verisk Maplecroft and Wood Mackenzie, expôs um panorama de redução de custos para manutenção do mercado

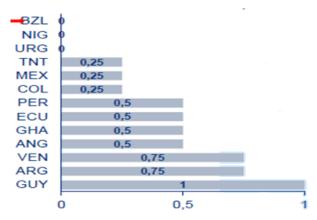
por meio da eficiência operacional e a competitividade do Brasil em decorrência dos riscos inerentes à sua realidade.

Por meio de *scores* bi-modais, com escala de 0 a 1, graduada em 0,25, os riscos inerentes a cada tópico foram sopesados na geração de uma classificação dos países avaliados. O valor zero corresponde à inexistência do risco e o valor um significa o seu ponto máximo.

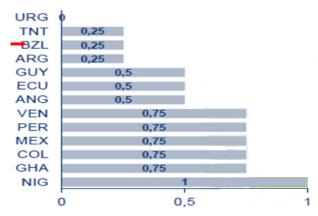
Quanto aos direitos humanos (respeito às leis trabalhistas, direitos indígenas, etc.), a avaliação é de alto risco, ressaltando que a maioria dos países onde há E&P esse risco predomina. A questão ambiental também traz riscos altos, principalmente devido à complexidade do processo de licenciamento, que envolve autoridades de várias esferas e a disponibilidade hídrica.

Fonte: Verisk Maplecroft and Wood Mackenzie.

Figura 3 – Risco ambiental: legislação de licenciamento e fiscalização ambiental


Os riscos naturais (abalos sísmicos, etc.) podem ser considerados inexistentes no Brasil e o colocam em uma boa situação nesse quesito. No tocante a riscos de ativos (contratuais), o Brasil está entre o grupo que respeita contratos, em posição melhor e diferenciada de vizinhos, tornando-se mais atrativo do que esses.

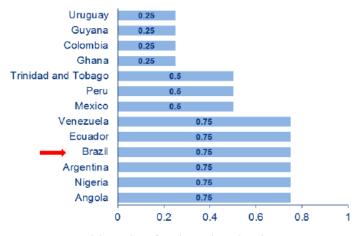
Fonte: Verisk Maplecroft and Wood Mackenzie.


Figura 4 - Risco econômico: segurança jurídica e contratual

Os riscos geopolíticos também são considerados inexistentes, ditos "zero", ao contrário da maioria de outros locais em que há exploração de hidrocarbonetos. Quanto à segurança, o Brasil está situado em posição superior ao México, Venezuela e Nigéria.

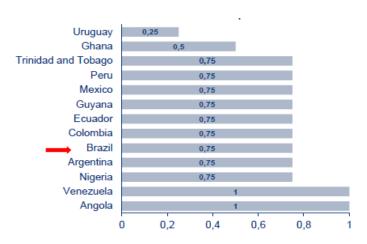
Fonte: Verisk Maplecroft and Wood Mackenzie.

Figura 5 – Riscos políticos: geopolítica



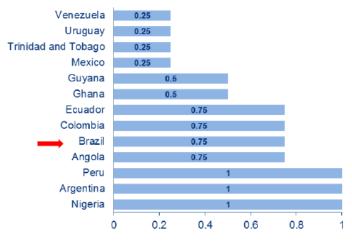
Fonte: Verisk Maplecroft and Wood Mackenzie.

Figura 6 – Riscos políticos: segurança de ativos, ataques terroristas, intervenções de forças armadas e pirataria


Quanto aos pontos considerados como fraquezas (ameaças), são apontadas a presença do Estado na economia, bem como a conduta da Petrobras. Afirmou que se trata uma NOCⁱⁱ que prejudica o mercado. A corrupção, por seu turno, situa o Brasil em posição abaixo de Uruguai, México e Peru.

ii National Oil Company.

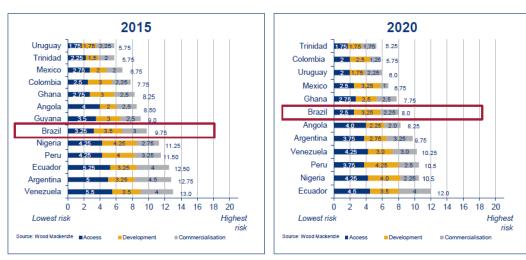
Fonte: Verisk Maplecroft and Wood Mackenzie.


Figura 7 – Risco econômico: presença do Estado

Fonte: Verisk Maplecroft and Wood Mackenzie.

Figura 8 – Risco econômico: corrupção

Foi mencionada a regulamentação como outro fator de baixa competitividade que, sob a ótica da Verisk Maplecroft and Wood Mackenzie, situa o Brasil abaixo da Nigéria e do Peru. A questão de vazamentos não é bem administrada pelos órgãos responsáveis pela fiscalização. A política de conteúdo local traz apreensão, pois 40% da produção estão sujeitos a 59% de conteúdo local, sem a garantia de que a indústria local seja capaz de atender a demanda.



Fonte: Verisk Maplecroft and Wood Mackenzie.

Figura 9 - Risco regulatório

A consultoria identificou as variáveis de risco específico que afetam cada etapa da cadeia produtiva de P&G e classificou em três grupos: acesso, desenvolvimento e comercialização. O acesso engloba a facilidade de ingresso, o sistema fiscal, a segurança jurídica, a presença do Estado, regulação, corrupção e geopolítica. O desenvolvimento contempla o ativismo trabalhista, desastres naturais, agitação civil, segurança, meio ambiente, cadeia de suprimentos e conteúdo local. A comercialização inclui infraestrutura, estabilidade fiscal, preços, risco cambial, obrigações no mercado interno, acesso ao mercado de gás e filiação à OPEP.

Em síntese, foram mencionados como principais fatores de risco do panorama atual para o Brasil: as questões relativas à legislação ambiental, a cadeia de suprimentos e a regulação. Entretanto, a projeção é de melhora da posição do Brasil quanto à atratividade de investimentos e ambiente de negócios nos próximos cinco anos. A figura a seguir ilustra essa melhora projetada.

Fonte: Verisk Maplecroft and Wood Mackenzie.

Figura 10 – Projeção de melhora da atratividade de investimentos do Brasil

2.5.4 Proteção da Cadeia de Abastecimento

A segurança energética deve ser pensada não somente em termos de suprimento energético, mas também no que se refere à totalidade da cadeia de suprimento, desde o produtor até o consumidor final — plantas de geração de energia, refinarias, plataformas *offshore*, terminais, portos, oleodutos, linhas de transmissão e distribuição, esferas, tanques, subestações, etc. Quanto à infraestrutura e às cadeias de suprimento, essas foram concebidas décadas atrás, sem a ênfase na segurança que teriam caso fossem projetadas na atualidade, deste modo, as vulnerabilidades dessa extensiva infraestrutura vão desde ataques abertamente hostis a pequenos eventos que podem levar a um apagão generalizado.

A cada dia, o comércio de energia torna-se mais global e assegurar sua continuidade requer colaboração adicional tanto de produtores quanto de consumidores. Pontos críticos de estrangulamento nas rotas marítimas criam determinadas vulnerabilidades para o transporte de petróleo, derivados e GNLⁱⁱⁱ, na ocorrência de

17

iii Gás natural liquefeito.

acidentes, ataques terroristas e conflitos militares. A Figura 11 mostra os sete pontos críticos mais relevantes.

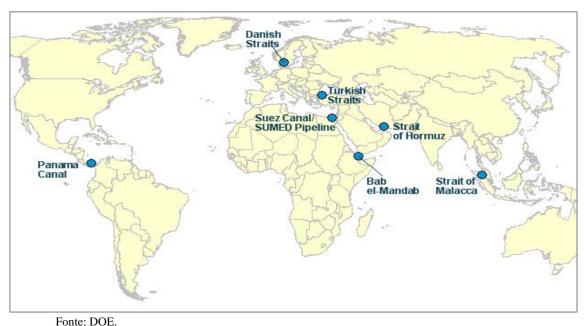


Figura 11 – Os sete pontos críticos mais relevantes

A título de exemplo cita-se o ponto crítico mais conhecido, o Estreito de Hormuz, que separa o Golfo Pérsico do Oceano Índico (localizado em uma região que compreende mais de 25% da produção mundial de petróleo), ilustrado pela Figura 12.

Em 2014, ofensivas militares e o recrudescimento das relações diplomáticas foram noticiados em outro ponto crítico: o Estreito de Bósforo (Figura 13), com pouco mais de 30 quilômetros de comprimento, 3 quilômetros de largura em sua parte mais larga e 800 metros em sua parte mais estreita. Esse estreito conecta o Mar Negro ao Mar de Marmara e ao Mediterrâneo. Todos os dias, mais de 3 milhões de barris de petróleo provenientes da Rússia e da Ásia Central passam exatamente pelo centro de Istanbul.

Recentemente, um novo risco tem sido revelado. Os mares mais abertos – espaços geográficos mundialmente não governados – têm se tornado mais perigosos. A área em torno do Chifre da África – o Golfo de Aden, o qual dá acesso ao estreito de Bab el-Mandeb, além das águas ocidentais do Oceano Índico, sul da Península Arábica – tem se tornado uma arena de pirataria proveniente da Somália e países vizinhos. Com isso, há o surgimento da denominada "radicalização da pirataria", com aumento da cooperação entre piratas e grupos terroristas. Usando embarcações de grande porte, os piratas operam a milhares de milhas náuticas de suas bases em terra. As forças navais da Europa, Estados Unidos, Rússia, China e Índia estão atuando nessas águas, visando repelir e deter ataques de piratas.

Devido ao fato de essas águas serem a principal rota para navios de petróleo e de GNL do Golfo da Pérsia para a Europa e América do Norte, e da proximidade do Golfo a elas, esses surtos de pirataria adicionam mais um componente para as preocupações com segurança na região, que possui metade das reservas de petróleo provadas do mundo.

Fonte: DOE.

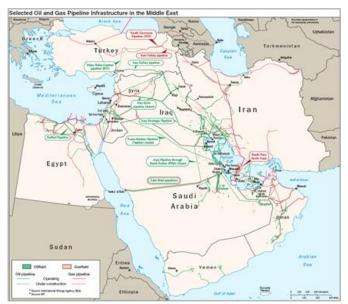


Figura 12 – Estreito de Hormuz

Fonte: DOE.

Figura 13 – Estreito de Bósforo

2.6 Estudos precedentes

Relatório "Estudo sobre Estoques Estratégicos de Combustíveis"

Em decorrência da publicação da Lei nº 8.176/1991 e do Decreto nº 238/1991, o CNPE considerou como pertinente avaliar a necessidade de formação de reservas estratégicas de petróleo e etanol carburante no País. Destarte, em 2001, a Resolução CNPE nº 07/2001 criou o CT-04 do CNPE, para desenvolver, entre outros, estudos sobre estoques estratégicos de combustíveis.

Em consequência, ao longo de 2002, com participação da Pontifícia Universidade Católica PUC-Rio e sob a coordenação da ANP, o CT-04 desenvolveu o "Estudo sobre Estoques Estratégicos de Combustíveis", considerando, para tanto, a análise dos mercados de petróleo, GLP, QAV, gasolina A, óleo diesel A e óleo combustível. O estudo teve por base a relação entre o custo, para o País, do estoque estratégico e a perda econômica associada à falta de um determinado combustível, considerando cenários de contingências que poderiam afetar, de forma grave, a oferta interna ou externa desses produtos.

De início, faz-se necessário mencionar as diferenças de nomenclatura existentes no estudo do CT-04 com relação ao que estabelece a Lei nº 8.176/1991 e o Decreto nº 238/1991. No mencionado estudo, utiliza-se o termo "estratégico" tanto para petróleo quanto para combustíveis, enquanto que, na legislação citada, há clara distinção entre reserva estratégica e estoque de operação: o primeiro termo é aplicável somente a petróleo e etanol, enquanto o segundo se aplica apenas a combustíveis.

Isso posto, o estudo trouxe dois fatos importantes a serem considerados na formação de estoques de petróleo. O primeiro é que os eventos externos (acidentes, guerras e embargos dos países produtores de petróleo e derivados) não apresentaram risco de restrição e/ou interrupção no suprimento no período de estudo, de 50 (cinquenta) anos, mas apenas oscilações no preço. O segundo é que, já naquela época, o País apresentava elevação significativa de sua produção de petróleo, a qual apontava para um volume maior do que o consumo equivalente em derivados. Postulou-se que países autossuficientes fazem estoques somente para controlar o mercado internacional, não sendo este o objetivo da formação de reservas estratégicas nos termos da Lei nº 8.176/1991 e do Decreto nº 238/1991.

Com base nos resultados do mencionado estudo, apresentados em outubro daquele ano, o CT-04 decidiu recomendar ao CNPE que não fossem constituídos estoques estratégicos para petróleo GLP, QAV, gasolina A, óleo diesel A e óleo combustível. De acordo com a nomenclatura estabelecida pela Lei nº 8.176/1991 e o Decreto nº 238/1991, tal decisão compreende tanto reserva estratégica quanto estoques de operação.

Nota Técnica ANP nº 010, de 1999

Em novembro de 1999, a Superintendência de Estudos Estratégicos da então denominada Agência Nacional do Petróleo elaborou a Nota Técnica nº 010, denominada "Sugestões de Posicionamento da ANP Sobre a Questão dos Estoques Estratégicos de Combustíveis". Na ocasião, foram analisados: petróleo bruto, óleo diesel, GLP e nafta petroquímica.

Além de sugestões de posicionamento, a Nota Técnica ANP n° 010/1999 apresentou um relato sobre a experiência internacional. O documento cita, com as devidas ressalvas, o fato de vários países possuírem estoques estratégicos (reservas estratégicas), como os países da AIE (que, na ocasião, eram os mesmos da Organização para a Cooperação e Desenvolvimento Econômico).

O documento incentiva uma reflexão que transcende as questões jurídicas. Relata as contingências que levavam os países a advogarem a redução de estoques estratégicos e seus derivados. Além disso, alerta para pontos básicos a serem considerados: (i) que os países do G-7 respondiam por 50% da demanda mundial de petróleo e derivados; (ii) que os países em desenvolvimento não possuíam estoques estratégicos, principalmente em função de seus elevados custos de implantação e manutenção; (iii) que os contratos de concessão de exploração e produção (E&P) no Brasil autorizam os agentes a exportarem sua produção, salvo em caso de emergência declarada por Decreto Presidencial; (iv) que os países que revelavam alta preocupação com a matéria possuíam alta dependência externa do petróleo; e (v) que análises de risco deveriam levar em conta a probabilidade de ocorrência do evento, suas consequências diretas e indiretas, bem como a capacidade de suportar tais consequências.

À época da elaboração da Nota Técnica da ANP n° 010/1999, as necessidades de petróleo importado do Brasil correspondiam a apenas 1,1% do total exportado no mundo. Foi relatado, como contraposição à ideia de que os estoques poderiam garantir o abastecimento interno, que a probabilidade de ocorrência de ruptura de fornecimento de longa duração era baixa, dada a dependência recíproca entre exportadores e importadores. Ponderou-se que a maior parte das receitas de países exportadores era proveniente da venda de petróleo, o que tornava a disponibilidade do produto indubitável no horizonte dos estoques estratégicos.

Foi lembrado que a aquisição, nos termos da Lei nº 8.176/1991, deveria ser realizada pela União. Assim, à época, a compra e a venda públicas dos produtos pela Lei nº 8.666/1993 e sua movimentação foram consideradas óbices.

Por fim, a citada nota técnica afirma que a manutenção de nível adequado de estoques operacionais de petróleo e seus derivados, por parte de seus refinadores, companhias distribuidoras e seus importadores, poderia reduzir sobremaneira os riscos de ruptura de fornecimento desses produtos.

Relatório "Reserva Estratégica e Estoques de Operação do Sistema Nacional de Estoques de Combustíveis" de dezembro de 2013

Esse relatório apresentou análises, conclusões e recomendações elaboradas em 2013, entre os meses de outubro e novembro, pelo Grupo de Trabalho criado para tratar do Sistema Nacional de Estoques de Combustíveis, o qual, posteriormente, veio a ser oficializado pela Portaria MME nº 250/2014 (GT).

Tendo como ponto de partida de suas análises os requisitos estabelecidos pela Lei nº 8.176, de 8 de fevereiro de 1991, pelo Decreto nº 238, de 24 de outubro de 1991 e pela Lei nº 9.478, de 6 de agosto de 1997, o Grupo de Trabalho estudou referências internacionais, observando históricos e tendências relacionados à oferta/demanda mundial e nacional de etanol carburante, petróleos e seus derivados.

Em face do prazo exíguo estabelecido para os estudos, foi adotada metodologia de AQR para identificar riscos (oportunidades e ameaças) atuais e futuros ao objetivo em

foco, traduzido pela disponibilidade dos produtos, quer seja petróleo (produzido ou importado) para o refino nacional, etanol ou combustíveis básicos para o abastecimento do mercado brasileiro.

De acordo com a metodologia adotada, foram atribuídas probabilidades de ocorrência aos riscos, descrevendo-se, também, o impacto desses riscos, quando efetivados, sobre o objetivo.

Com relação à análise dos estoques de operação de combustíveis, foi considerado o trabalho coordenado pela Superintendência de Abastecimento da ANP (ANP/SAB), do GFL, realizado entre o segundo semestre de 2012 e o primeiro semestre de 2013. Com efeito, naquele relatório, demonstrou-se como os resultados e recomendações produzidos pelo GFL se alinham ao atendimento da citada legislação, inclusive com a proposição de um instrumento regulatório específico, materializado na Resolução ANP nº 45, de 22 de novembro de 2013.

O relatório trouxe as seguintes conclusões e recomendações:

Conclui-se que:

- a) não é necessária a formação de reserva estratégica de petróleo e etanol no Brasil;
- b) é necessária a formação de estoques de operação para óleo diesel A e gasolina A, por meio de regulamentação da ANP, conforme Resolução ANP nº 45/2013;
- c) as indicações da Análise Qualitativa de Riscos apontam baixa relevância para risco de descontinuidade e/ou restrição no suprimento de petróleo (produzido ou importado)
- d) o Brasil consolidará, nos próximos 10 anos, a sua posição de exportador líquido de petróleo; e
- e) a capacidade de produção de etanol total é suficiente para garantir o abastecimento do mercado de etanol anidro nos próximos 10 anos.

Recomenda-se:

- a) formalizar GT para realizar, anualmente, estudos acerca da necessidade e formação de reservas estratégicas e de estoques de operação a serem apresentados ao CNPE;
- b) revisar os atos normativos no sentido de atualizar procedimentos, conceitos e terminologias, conforme legislação vigente (em especial, o Decreto nº 238/1991);
- c) em 2014, avaliar a necessidade de regulamentação de estoques de operação para os demais combustíveis; e
- d) elaborar relatórios periódicos dos eventos que resultarem em restrição e/ou interrupção de produção nacional de petróleo e abastecimento de combustíveis.

Relatório "Reserva Estratégica e Estoques de Operação do Sistema Nacional de Estoques de Combustíveis" de dezembro de 2014

Foram iniciadas atividades referentes a uma análise quantitativa dos riscos, com objetivo de mensurar os custos de formação de reservas estratégicas vis-à-vis possíveis

impactos na economia nacional em eventual indisponibilidade de petróleo e de etanol carburante. Como resultado parcial desse trabalho, o estudo apresentou a definição de modelagem econômica de estimativa para os custos de formação de reservas estratégicas.

A metodologia de Análise Qualitativa de Riscos (AQR) foi novamente adotada para identificar riscos (oportunidades e ameaças) atuais e futuros ao objetivo em foco, traduzido pela disponibilidade dos produtos, quer seja petróleo (produzido ou importado) para o refino nacional, etanol carburante ou combustíveis básicos para o abastecimento do mercado brasileiro. De acordo com a metodologia adotada, foram atribuídas probabilidades de ocorrência aos riscos, descrevendo-se, também, o impacto desses riscos, quando efetivados, sobre o objetivo. A conclusão foi de baixo risco de graves interrupções no abastecimento de petróleo e etanol.

Com relação à análise dos estoques de operação de combustíveis, foi considerado o trabalho do GFL coordenado pela Superintendência de Abastecimento da ANP (ANP/SAB), que já havia definido os estoques mínimos de operação para gasolina A e óleo diesel em 2013, por meio da Resolução ANP nº 45, de 22 de novembro de 2013. Durante o ano de 2014, foram abordados os combustíveis GLP e QAV, com a realização de consultas e audiências públicas promovidas pela Agência. O estudo concluiu que os resultados e recomendações produzidos pelo GFL se alinham ao atendimento da legislação que trata do SINEC.

O Relatório Trouxe as seguintes conclusões e recomendações:

Conclui-se que:

- a) continua não sendo necessária a formação de reservas estratégicas de petróleo e etanol carburante no Brasil;
- b) os estoques de operação de combustíveis contribuem para mitigar eventuais falhas de logística e de infraestrutura;
- c) a Análise Qualitativa de Risco (AQR) apontou baixa relevância para risco de descontinuidade e/ou restrição no suprimento de petróleo (produzido ou importado);
- d) o Brasil se consolidará como exportador líquido de petróleo nos próximos 10 anos (PDE 2023); e
- e) há garantia de abastecimento do mercado de etanol anidro nos próximos 10 anos (PDE 2023).

Recomenda-se:

- a) concluir a revisão dos atos normativos no sentido de atualizar procedimentos, conceitos e terminologias, conforme legislação vigente;
- b) concluir a implementação de estoques de operação de derivados (GLP e QAV) e avaliar os fluxos logísticos de OC para geração termelétrica;
- c) concluir os trabalhos da Força Tarefa para avaliação quantitativa dos riscos; e
- d) implantar sistemática para emissão de relatórios periódicos dos eventos que resultarem em restrição e/ou interrupção de produção nacional de petróleo e abastecimento de combustíveis.

Relatório "Reserva Estratégica e Estoques de Operação do Sistema Nacional de Estoques de Combustíveis" de dezembro de 2015

Foram continuados os estudos referentes à Análise Quantitativa de Risco, com a conclusão dos cálculos referentes à formação dos estoques. Entretanto, por indisponibilidade de dados que permitissem estabelecer uma curva de custos decorrentes da falta de petróleo e derivados, não foi possível realizar a comparação custos de formação de estoques versus custos da falta de derivados.

A metodologia de Análise Qualitativa de Riscos (AQR) foi atualizada e contextualizada para novo cenário do mercado de petróleo, do refino nacional de maneira a contemplar os elementos básicos para o abastecimento do mercado brasileiro. De acordo com a metodologia adotada, foram atribuídas probabilidades de ocorrência aos riscos, descrevendo-se, também, o impacto desses riscos, quando efetivados, sobre o objetivo. A conclusão foi de baixo risco de graves interrupções no abastecimento de petróleo e etanol.

Foi realizada uma análise estatística em função do histórico dos eventos críticos internos e externos, com a definição, a partir dos volumes de perdas e restrições no suprimento, de probabilidades de ocorrência e seus valores. Calculou-se que há 95% de chance de um próximo evento crítico externo situar-se abaixo de 4,58% da produção mundial de petróleo. Com relação aos eventos críticos internos, os cálculos resultaram em uma probabilidade de 95% de que eventual ocorrência esteja situada abaixo 1,14% da produção nacional.

Com relação à análise dos estoques de operação de combustíveis, foi considerado o trabalho do GFL coordenado pela Superintendência de Abastecimento da ANP (ANP/SAB), que já havia definido os estoques mínimos de operação para gasolina A e óleo diesel em 2013, por meio da Resolução ANP nº 45, de 22 de novembro de 2013. Durante o ano de 2014, foram abordados os combustíveis GLP e QAV, com a realização de consultas e audiências públicas promovidas pela Agência. O estudo concluiu que os resultados e recomendações produzidos pelo GFL se alinham ao atendimento da legislação que trata do SINEC. Em 2015, foi avaliado que o cumprimento de resoluções, em que pese a judicialização de parte do arcabouço regulatório, se dá a contento.

O Relatório trouxe as seguintes conclusões e recomendações:

Conclui-se que:

- a) continua não sendo necessária a formação de reservas estratégicas de petróleo e etanol carburante no Brasil;
- b) os estoques de operação de combustíveis contribuem para mitigar eventuais falhas de logística e de infraestrutura;
- c) a Análise Qualitativa de Risco (AQR) apontou baixa relevância para risco de descontinuidade e/ou restrição no suprimento de petróleo (produzido ou importado);
- d) a Análise semiquantitativa, baseada em cálculos probabilísticos para pequenas amostras em função da amostra disponível, resultou em probabilidades de 95 % de:
 - 1. em caso de ocorrência de eventos críticos externos, estes serem menores ou iguais a 4,58% da produção mundial de petróleo;
 - 2. em caso de ocorrência de eventos críticos internos, estes serem menores ou iguais a 1,14%;

- e) o Brasil se consolidará como exportador líquido de petróleo nos próximos 10 anos (PDE 2024); e
- f) há garantia de abastecimento do mercado de etanol anidro nos próximos 10 anos (PDE 2024).

Recomenda-se:

- a) avaliar conveniência e oportunidade para iniciar processo legislativo para alteração dos atos normativos vigentes;
- b) interagir com a Secretaria de Portos da Presidência da República no sentido de nivelar informações sobre gargalos e investimentos necessários para internação de granéis líquidos;
- c) concluir os trabalhos da Força Tarefa para avaliação quantitativa dos riscos, envolvendo o IBGE como órgão oficial para elaboração de matrizes nacionais de insumo-produto; e
- d) implantar sistemática para emissão de relatórios periódicos dos eventos que resultarem em restrição e/ou interrupção de produção nacional de petróleo e abastecimento de combustíveis.

Análise Quantitativa de Riscos

A Análise Quantitativa dos Riscos está dividida em duas etapas: (i) cálculo dos custos de formação de reservas estratégicas e (ii) estimativa do impacto da falta de combustível na economia. A primeira etapa, contemplando os custos de construção de tancagem, aquisição dos produtos, operação e manutenção, foi concluída em 2015 e consta do relatório daquele ano. A segunda etapa, que deve utilizar uma modelagem econômica específica, avançou com a colaboração e orientação do Instituto Brasileiro de Geografia e Estatística (IBGE) sobre as questões atinentes à macroeconomia e contas nacionais. Com efeito, haverá colaboração dessa instituição na formulação de parâmetros para modelagem econômica.

A proposta é que representantes do GT-SINEC participem, desde o início, da elaboração da Matriz Insumo-Produto 2015, cujos resultados proporcionam uma visão detalhada da estrutura produtiva brasileira e permitem avaliar o grau de interligação setorial da economia e também os impactos de variações na demanda final dos produtos, mediante a identificação dos diversos fluxos de produção de bens.

3 Reservas estratégicas

O objetivo deste capítulo consiste em apresentar um conjunto de informações acerca da formação de reservas estratégicas de petróleo e de etanol carburante, tendo como base a definição legal de "reserva estratégica" no País. Com efeito, o Decreto nº 238/1991 estabelece que a reserva estratégica destina-se a assegurar o suprimento de petróleo e de álcool para fins carburantes quando do surgimento de contingências que afetem de forma grave a oferta interna ou externa desses produtos.

3.1 Petróleo

Existe uma quantidade considerável de referências bibliográficas que tratam de reservas estratégicas para petróleo, uma vez que este insumo representa mais de 31% do consumo energético primário mundial⁵.

Com o intuito de embasar o desenvolvimento deste documento, apresenta-se a seguir um breve histórico de eventos que implicaram choques de oferta de petróleo e seus derivados, em nível mundial e nacional, bem como o tratamento dado a este tema por diversos países.

3.1.1 Histórico e risco de restrição e/ou interrupção no suprimento de petróleo

Com o objetivo de identificar os eventos cuja criticidade seja capaz de causar deficiência na oferta de petróleo, procedeu-se sua divisão em dois grupos: de natureza externa e interna. Entre os eventos de natureza externa estão, por exemplo, eventos climáticos, guerras, embargos ocorridos fora do país. Entre os de natureza interna, é possível citar greves de petroleiros, conflitos internos, falhas na malha logística de suprimento de petróleo ou combustíveis.

3.1.1.1 Eventos críticos externos

Com base nessas considerações, foi realizada uma busca de eventos ocorridos no mundo (eventos externos), de modo a se verificar sua criticidade com relação ao Brasil. A partir dos dados já tabulados no "Estudo sobre Estoques Estratégicos de Combustíveis", elaborado por ANP e PUC-Rio em 2002, foi possível obter alguns dados indisponíveis à época e complementar a lista de eventos. Na

Tabela 1, pode-se visualizar com mais detalhe cada evento, considerando apenas os que resultaram em deficiência média na oferta de petróleo superior a um milhão bpd, apresentando duração do evento, deficiência média, produção mundial à época e relação deficiência/produção.

Tabela 1 – Deficiências no fornecimento de petróleo desde 1956

	Motivo	Duração (meses)	milhões bpd		
Data			Deficiência média no fornecimento	Produção petrolífera mundial	/ Produção (%)
nov/56 - mar/57	Guerra de Suez	4	2,0	nd	nd
jun/67 - ago/67	Guerra dos 6 dias	2	2,0	37,11	5,4
mai/70 - jan/71	Controvérsia no preço do petróleo na Líbia; dano em Tapline	9	1,3	48,06	2,7
out/73 - mar/74	Guerra do Yom Kippur (Guerra Árabe-Israelense de 1973)	6	2,6	58,54	4,4
nov/78 - abr/79	Revolução iraniana	6	3,5	64,70	5,4
out/80 - dez/80	Guerra entre Irã e Iraque	3	3,3	62,96	5,2
ago/90 - out/90	Invasão do Iraque no Kuwait; operação <i>Sandstorm</i>	3	4,6	65,38	7,0
abr/99 - mar/00	OPEP corta produção de petróleo para aumentar os preços	12	3,3	73,62	4,5
jun/01 - jul/01	Suspensão da exportação de petróleo iraquiano	2	2,1	75,20	2,8
dez/02 - mar/03	Greve na Venezuela	4	2,6	76,26	3,4
mar/03 - dez/03	Guerra no Iraque	10	2,3	77,57	3,0
ago/05 - set/05	Furação Katrina	2	1,5	82,01	1,8
mar/11 - fev/12	Guerra civil na Líbia	12	1,2	82,49	1,5
mar/13 - dias atuais	Guerra civil na Líbia	21*	1,0	93,2*	1,2

^{*} Considerado para efeito de cálculo, situação em: dez/2015

Fonte: Agência Internacional de Energia, BP statistical review e OPEP.

Observa-se que, em 60 anos (de 1956 a 2015), foram registradas 13 ocorrências com déficit superior a 1 milhão bpd, sendo 8 relativas a conflitos armados. Nesse período, a média de duração de eventos com interrupção no fornecimento foi um pouco inferior a 6 meses (valor mais frequente de 2 meses), sendo que a deficiência média na oferta de petróleo foi de 2,5 milhões bpd.

É importante registrar que, em julho de 2012, o Conselho de Segurança das Nações Unidas decidiu reforçar as sanções econômicas contra o Irã, incluindo o embargo à aquisição de petróleo por países-membros da União Europeia, ato que teve como efeito a redução na produção de petróleo daquele país em 0,9 Mbpd, em média, até setembro de 2015. Com a retirada do embargo em janeiro de 2016, este volume volta a ser disponibilizado ao mercado, tendo o Irã elevado sua produção em mais de 600 mil bpd desde então⁶. Contudo, este valor de interrupção não consta na tabela, uma vez que não alcança o corte estabelecido.

O Gráfico 5 sintetiza a frequência de eventos classificada em função da duração da interrupção.

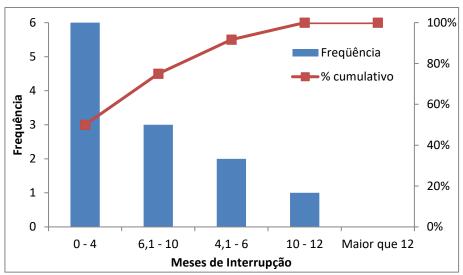


Gráfico 5 - Frequência de eventos classificados pelo tempo de interrupção

Em termos estatísticos, para um intervalo de confiança de 95%, os próximos eventos, provavelmente, teriam duração entre 3,6 e 10,1 meses. O máximo registrado nos dados históricos em termos de duração é a Guerra Civil na Líbia. Porém, é possível notar que os eventos de maior duração não foram os de maior deficiência na produção. iv

No tocante à deficiência média de fornecimento, comparando-se os valores de cada interrupção com a produção mundial de petróleo à época, constata-se que a maioria desses eventos não afetou a oferta potencial de petróleo. O maior impacto na oferta foi de 4,6 milhões bpd, no período de agosto a outubro de 1990 (Guerra do Golfo). O gráfico abaixo estabelece faixas de deficiência média no fornecimento em volumes diários e os classifica em função de suas frequências.

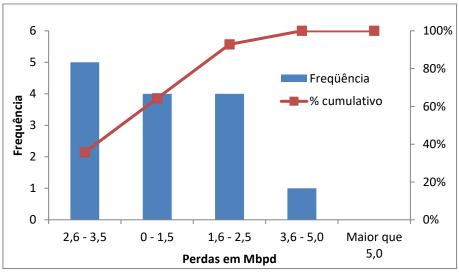


Gráfico 6 – Frequência de eventos classificados pela deficiência média no fornecimento em volumes diários em volumes diários

Pode-se constatar que mais de 90% dos eventos situa-se abaixo de 3,5 milhões bpd. Esse valor, em termos atuais, representa em torno de 4% da produção mundial de petróleo. Conclui-se, pelos históricos, que a deficiência máxima na produção de petróleo

iv Aplicada a distribuição t de Student.

registrada foi de 4,6 milhões bpd. Isso equivale a, aproximadamente, 5% da produção mundial atual, com uma ocorrência em 59 anos.

Entretanto, torna-se necessária uma análise acerca da perda de produção relativa. Isso porque a produção mundial ao longo da série analisada variou, crescendo dos 37,1 milhões de bpd até os atuais 96,5 milhões bpd⁷. Assim, o gráfico abaixo resume a frequência dos eventos críticos classificados pela sua magnitude em relação à produção mundial da época em que ocorreu.

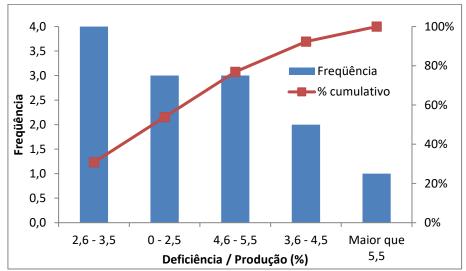


Gráfico 7 — Frequência de eventos classificados pela deficiência média no fornecimento em relação à produção mundial

Avaliando-se o aspecto estatístico, e considerando essa amostragem, pode-se dizer que, para um nível de confiança de 95%, as prováveis interrupções futuras estariam situadas num intervalo entre 2,65% e 4,83% da produção mundial.

3.1.1.2 Eventos críticos internos

O estudo de 2002 apurou que, no período de 1986 a 2001, os maiores impactos decorrentes de eventos internos no Brasil ocorreram nos anos de 1991, 1994 e 1995, todos por motivo de greve, com a perda do correspondente a 2,8%, 2,6% e 5,1% da produção potencial de petróleo, respectivamente. O referido relatório destaca que, mesmo durante esses eventos, não houve problema de abastecimento no País. A Tabela 2 apresenta os volumes apurados à época.

Tabela 2 – Contingências internas e impactos sobre oferta, entre 1986 e 2001

			m³			Perda/
Ano	Produção efetiva	Greve	Segurança operacional	Unidade de produção adjacente	Perdas totais	Produção (%)
1986	34.437.185	-	60.863	-	60.863	0,2%
1987	34.250.880	-	55.415	-	55.415	0,2%
1988	33.485.217	-	162.464	204.663	367.127	1,1%
1989	35.794.460	-	46.049	-	46.049	0,1%
1990	37.929.261	-	132.034	=	132.034	0,3%
1991	37.528.737	1.030.285	45.710	-	1.075.995	2,8%
1992	37.898.766	22	13.330	-	13.352	0,0%
1993	38.780.007	-	61.556	=	61.556	0,2%
1994	40.204.093	1.036.585	54.985	-	1.088.570	2,6%
1995	41.557.805	2.220.497	19.673	=	2.240.170	5,1%
1996	46.948.146	-	42.739	=	42.739	0,1%
1997	50.444.744	-	33.168	-	33.168	0,1%
1998	58.276.979	-	36.000	-	36.000	0,1%
1999	65.678.723	5	76.730	-	76.735	0,1%
2000	73.738.397		205.766	=	205.766	0,3%
2001	77.525.594	20.478	592.275	=	612.753	0,8%

Fonte: ANP.

Importa destacar que, nas Tabelas 2 e 3, a coluna "Segurança operacional" trata de atividades referentes à prevenção, mitigação e resposta a eventos que possam causar acidentes por meio da gestão da integridade das instalações (vistorias, auditorias, manutenções preventiva e corretiva). Por seu turno, a coluna "unidades de produção adjacentes" é referente a *upsides* ou outras unidades que compartilham facilidades (instalações) do campo ou dos campos afetados.

Para o período de 2002 a 2015, também não houve nenhum evento que representasse interrupção e/ou restrição relevantes no suprimento de petróleo, conforme demonstra a

Tabela 3, elaborada pela Petrobras e registrando exclusivamente a sua produção de petróleo (individual ou consorciada).

Tabela 3 – Contingências internas e impactos sobre oferta, desde 2002

			m³			Perda/
Ano	Produção efetiva	Greve	Segurança operacional	Unidade de produção adjacente	Perdas totais	Produção (%)
2002	87.048.925	20.478	697.029	910.862	1.628.369	1,9%
2003	89.374.002	34	607.027	334.718	941.778	1,1%
2004	86.855.308	-	290.087	257.558	547.645	0,6%
2005	97.726.462	389	142.007	245.157	387.553	0,4%
2006	103.156.455	104	102.293	277.746	380.143	0,4%
2007	103.995.310	-	86.129	85.331	171.460	0,2%
2008	107.921.343	33.872	107.685	135.394	276.951	0,3%
2009	114.367.061	15.960	714.057	138.246	868.263	0,8%
2010	116.303.053	71	906.422	255.723	1.162.216	1,0%
2011	117.324.777	2.289	988.187	264.800	1.255.277	1,1%
2012	115.220.109	73	223.863	366.282	590.218	0,5%
2013	112.080.032	24.982	138.935	207.788	371.704	0,3%
2014	118.055.788	937	152.530	82.880	236.347	0,2%
2015	123.504.062	396.381	298.931	265.829	961.140	0,8%

Fonte: Petrobras.

O Gráfico 8 resume a frequência e a magnitude dos eventos críticos internos.

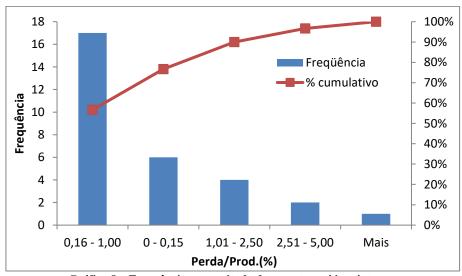


Gráfico 8 – Frequência e magnitude dos eventos críticos internos

Mais de 95% dos eventos estão na faixa de até 3% de perda de produção. Esse histórico permite avaliar que não há registro de eventos críticos internos que resultem em perdas significativas de produção do petróleo nacional. Considerando o conjunto de dados registrados, para um nível de confiança de 95%, as prováveis ocorrências de eventos críticos internos resultariam em perdas efetivas de produção entre 0,37% a 1,22%. Os eventos acima desse limite podem ser classificados como de baixa probabilidade.

Outro ponto importante, observado nos gráficos de controle de medidas individuais (por evento) e amplitudes móveis (entre eventos sucessivos), é o alcance regulatório da Lei nº 9.478/1997. Com efeito, observa-se a redução do valor das perdas de produção decorrentes dos eventos críticos no Gráfico 9.

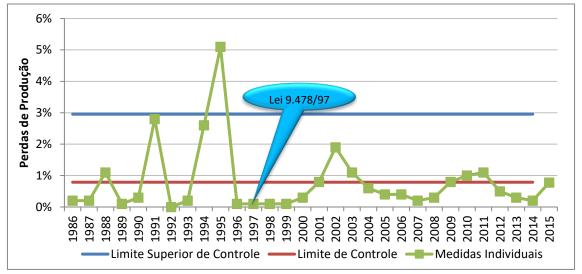


Gráfico 9 - Gráfico de controle dos eventos críticos internos (medidas individuais)

O fato também pode ser constatado nas amplitudes entre sucessivos eventos, conforme demonstra o Gráfico 10.

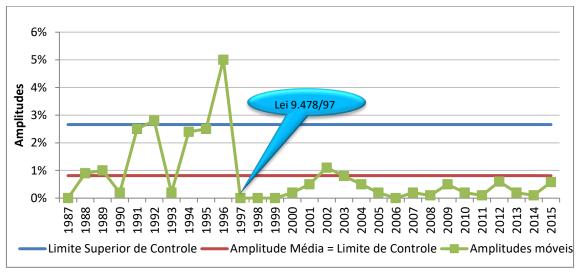


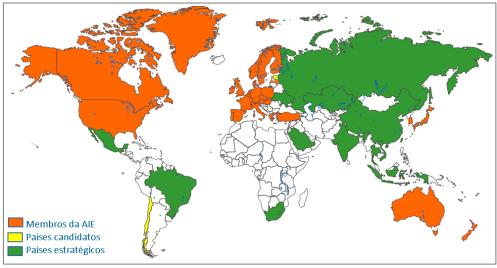
Gráfico 10 – Gráfico de controle dos eventos críticos internos (amplitudes móveis)

3.1.2 Reserva estratégica de petróleo no mundo

A formação de reserva estratégica de petróleo constitui um tema importante para a soberania das nações e depende de fatores diversos. Esse item expõe as políticas adotadas pelas maiores economias mundiais para o tratamento desse assunto.

3.1.2.1 Países da Organização para Cooperação e Desenvolvimento Econômico (OCDE), da Agência Internacional de Energia (AIE) e União Europeia (UE)

A Organização para a Cooperação e Desenvolvimento Econômico (OCDE) é uma entidade internacional, composta por 35 países, que procura fornecer uma plataforma para comparar políticas econômicas, solucionar problemas comuns e coordenar políticas domésticas e internacionais.


A OCDE teve origem em 1948, com a denominação de Organização Europeia para a Cooperação Econômica (OECE), para ajudar a gerir o Plano Marshall, cujo objetivo principal era a reconstrução da Europa pós-Segunda Guerra Mundial. Posteriormente, a sua filiação foi estendida a Estados não-europeus. Em 1961, a Convenção sobre a Organização para a Cooperação e Desenvolvimento Econômico reformou a OECE e deu lugar à OCDE.

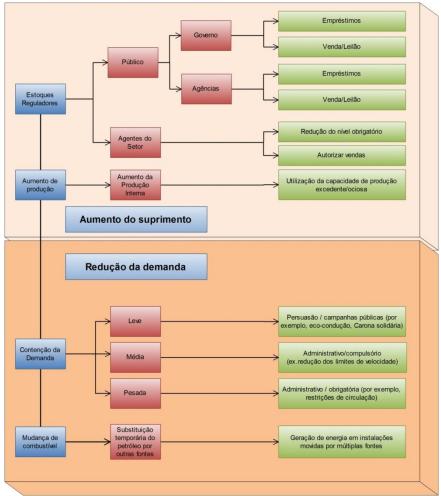
Trata-se de um fórum para enfrentamento dos desafios econômicos, sociais e ambientais da globalização. A OCDE concentra seus esforços para compreender e ajudar os governos a responderem aos novos desafios e preocupações, tais como a governança corporativa, a economia da informação e os desafios do envelhecimento da população. A OCDE oferece um ambiente onde os governos podem comparar experiências de políticas, buscar respostas para problemas comuns, identificar boas práticas e trabalhar para coordenar as políticas nacionais e internacionais.

No âmbito da OCDE, a AIE é um organismo autônomo, criado em novembro de 1974, voltado à implementação de programas internacionais de energia. Ela realiza um amplo trabalho de cooperação energética entre 29 dos 35 países membros da OCDE. Os objetivos básicos da AIE são:

- manter e melhorar os sistemas de mitigação de riscos de restrições e/ou interrupções no fornecimento de petróleo;
- promover políticas racionais de energia num contexto global, por meio de relações de cooperação com os países, indústria e organizações internacionais;
- operar sistemas de informação permanente sobre o mercado internacional de petróleo;
- melhorar o abastecimento de energia do mundo e a estrutura da demanda por desenvolvimento de fontes alternativas de energia e aumentar a eficiência do seu uso;
- promover a colaboração internacional em tecnologia de energia; e
- auxiliar na integração das políticas ambientais e energéticas.

A Figura 14 apresenta mapa com a disposição dos países-membros da AIE, países candidatos a ingressar na composição da AIE e países considerados estratégicos, seja sob a ótica da produção ou da demanda de petróleo.

Fonte: AIE.


Figura 14 - Composição da Agência Internacional de Energia

A missão principal da AIE é a resposta de emergência às restrições e/ou interrupções no fornecimento de petróleo. Sua capacidade de resposta coletiva visa mitigar os impactos negativos da escassez repentina na oferta de petróleo, utilizando as reservas estratégicas para compensar o déficit no mercado global para os seus integrantes.

Por meio de uma combinação de respostas de emergência, são implementadas medidas destinadas a aumentar a oferta e reduzir a demanda (Figura 15). A política de resposta a emergências da AIE se concentra em aliviar, no curto prazo, as consequências das restrições e/ou interrupções no fornecimento de petróleo.

O sistema de respostas foi inicialmente dimensionado para atuar de forma efetiva em eventos que provoquem uma redução de 7% ou mais na oferta mundial de petróleo e derivados. Atualmente, dada a peculiaridade dos eventos recentes para os quais a AIE teve que atuar, foram estabelecidas medidas de flexibilização para acionamento das reservas estratégicas.

Segundo a AIE, essa ferramenta não tem por finalidade a gestão de preços ou questões de fornecimento de longo prazo, que são geridas mais eficazmente por meio de outras políticas que incentivam, por exemplo, a redução de importação de petróleo, a economia de energia, a diversificação ou pesquisa, desenvolvimento e investimento em tecnologias de energia alternativa.

Fonte: AIE. Elaboração: MME.

Figura 15 – Sistema de resposta a emergências da AIE

Os países-membros da AIE assumem compromisso de manutenção de estoques equivalentes a 90 dias de suas respectivas importações líquidas. O cálculo é baseado na média das importações líquidas diárias do ano civil anterior. Esse conceito abrange o petróleo, LGN^v e produtos refinados, com exceção da nafta e de volumes utilizados como combustível para navegação de longo curso (*bunker*).

Esse compromisso pode ser cumprido por meio da contabilização de volumes exclusivamente para fins de emergência e para uso comercial ou operacional, incluindo os retidos nas refinarias, nas instalações portuárias e em navios nos portos⁸. A obrigação especifica vários tipos de estoques que não podem ser considerados: militares, navios em alto mar, tubulações, estações de serviço ou montantes armazenados por consumidores finais (estoques terciários), não incluindo o petróleo ainda não produzido.

É facultado aos países-membros organizarem-se para armazenar os energéticos fora das suas fronteiras nacionais e incluir instalações para atender sua exigência mínima. Esta opção é particularmente importante para os países em que as restrições de capacidade de armazenamento e logística de abastecimento fazem com que o armazenamento interno seja insuficiente. Para exercer esta faculdade e contar as ações realizadas no exterior para cumprir com a obrigação, os governos envolvidos devem assinar acordos bilaterais, garantindo o acesso incondicional às instalações em caso de emergência.

v Líquido de gás natural.

Ao fiscalizar a conformidade de um país com sua obrigação de estoque, a AIE aplica uma dedução de 10% de seus estoques totais, incluindo a armazenagem realizada sob acordos bilaterais, por considerá-los tecnicamente indisponíveis (fundos de tanques). No modelo estabelecido pela AIE, três de seus países-membros (Canadá, Dinamarca e Noruega), por serem exportadores líquidos de petróleo, não são obrigados a manter estoques. Entretanto, esses países possuem volumes consideráveis de estoques com propósitos diversos, tais como os usos comercial, operacional, militar e acordos bilaterais com outras nações.

A UE trata a questão por meio da *Council Directive 2009/119/UE*, de 14 de setembro de 2009, que obriga os Estados-Membros a manterem um nível mínimo de reservas de petróleo e/ou derivados. O art. 3°, inciso 1 dessa Diretiva estabelece:

(...)

Artigo 3°

Reservas de segurança — Cálculo das obrigações de armazenagem

1. Os Estados Membros tomam todas as disposições legislativas, regulamentares ou administrativas adequadas para assegurar, o mais tardar em 31 de Dezembro de 2012, a manutenção por sua conta, no território da Comunidade e de forma permanente, de um nível total de reservas de petróleo equivalente, no mínimo, à maior das quantidades representada quer por 90 dias de importações líquidas diárias médias quer por 61 dias de consumo interno diário médio.

(grifos nossos)

(...)

O critério é aparentemente mais rigoroso. Contudo, a metodologia adotada pela UE considera volumes de estoques desprezados na contabilidade da AIE, tais como fundos de tanques ou reservatórios. Isso denota uma base de cálculo mais ampla, que resulta em maiores volumes apurados.

É importante destacar que tais diretivas, apesar de terem por objetivo a segurança do abastecimento europeu, tem reflexo no mercado mundial de petróleo, como pode se observar no Gráfico 11.

Gráfico 11 - Medidas individuais dos eventos críticos externos

É notável a queda nas amplitudes entre eventos sucessivos tanto após a criação da AIE, quanto após o fim do prazo de implantação da *Council Directive 2009/119/UE*. Esse cenário torna os eventos críticos internacionais menos prováveis e impactantes no curto e médio prazo, conforme se observa no Gráfico 12.

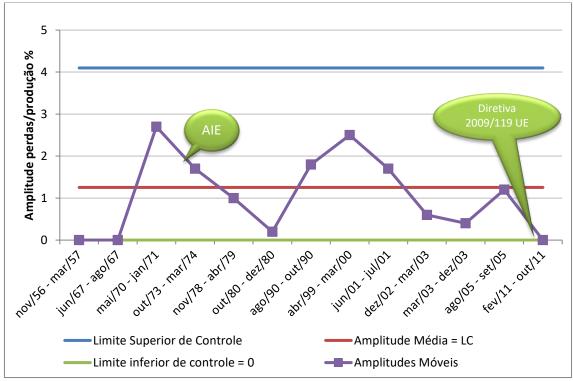


Gráfico 12 – Amplitudes dos eventos críticos externos

3.1.2.2 Países dos BRICS (Rússia, Índia, China e África do Sul)⁹

Rússia

Não foi identificado nenhum registro oficial de que a Rússia possua reserva estratégica de petróleo. Cabe destacar que há informações sobre utilização de estoques na Rússia para usos diversos – militar e operacional, por exemplo.

Índia¹⁰

A indústria de petróleo indiana apresenta uma situação peculiar. O país é, simultaneamente, importador líquido de petróleo, com produção da ordem de 900 mil bpd, e exportador líquido de derivados, com saldo de balança comercial superior a 600 mil bpd.

O Governo da Índia decidiu fixar formação de reservas estratégicas de petróleo no volume de 5 milhões de toneladas de petróleo — equivalente a pouco mais de 38 milhões de barris — em três locações distintas: Visakhapatnam, Mangalore e Padur. De acordo com a Companhia Indiana de Reservas Estratégicas de Petróleo (ISPRL), entidade responsável pela construção e manutenção dessas reservas, esse valor não inclui os estoques de operação e tem como objetivo servir como uma "almofada" em resposta às restrições e/ou interrupções externas no fornecimento.

A capacidade de tancagem projetada para formação das reservas estratégicas de petróleo indianas representa 10 dias da importação líquida de petróleo, uma vez que, no ano de 2015, a Índia importou 3,9 milhões bpd de petróleo. A técnica para armazenamento escolhida é a utilização de cavernas rochosas, dispostas em locações acessíveis ao refino.

Quanto à execução do projeto, a ISPRL reporta que: Visakhapatnam está operacional, em processo de enchimento, acumulando mais de 8 milhões de barris; Mangalore está pronta para iniciar o comissionamento; e Padur se encontra em fase final de construção, com mais de 98% de avanço físico.

Existe, ainda em fase de projeto, a proposta de uma segunda fase da reserva estratégica de petróleo indiana, para expandir essa capacidade de armazenamento em 12,5 milhões de toneladas, equivalente a 95 milhões de barris, dividida em quatro locações.

China¹¹

A China é um importante produtor de petróleo mundial, com produção superior a 4,3 milhões bpd em 2015. Entretanto, impulsionado por seu forte crescimento econômico, a demanda chinesa por petróleo e derivados saltou de 4,7 milhões bpd, em 2000, para 12 milhões bpd em 2015. Com esse consumo expressivo, apesar de ser a quinta maior produtora mundial, a China é importadora líquida de petróleo desde 1993, majoritariamente do Oriente Médio.

Diante de seu cenário energético, desde 2001, a China estabeleceu um sistema de estoque estratégico de petróleo com objetivo de elevar sua segurança energética, denominado Centro de Reserva de Petróleo Nacional (NORC). A primeira fase desse

sistema, concluída em meados de 2009, disponibilizou quatro unidades com capacidade de 103 milhões de barris. A segunda fase conta com dez estações e capacidade de 244 milhões de barris. O projeto prevê uma terceira fase, com expectativa de atingir capacidade de armazenamento total de 500 milhões de barris no ano de 2020.

O acionamento do sistema ocorre quando o mercado de petróleo está sujeito a mudanças significativas ou incidentes imprevistos, sendo iniciado pela Administração Nacional de Energia (NEA), que propõe ao Conselho de Estado um plano para liberar as reservas de petróleo de emergência. Depois da aprovação do Conselho de Estado, o NEA realiza as ações aprovadas em cooperação com outras partes interessadas, como a Comissão de Reforma e Desenvolvimento Nacional (NDRC), os ministérios relacionados e as NOCs.

Embora a informação sobre a reserva estratégica de petróleo chinesa seja escassa, os dados apurados pela AIE sugerem que os volumes acumulados pelos chineses são superiores aos valores relatados pela China OGP^{vi}, que abrange variações nos estoques comerciais. Segundo a AIE, as importações líquidas de petróleo da China atingiram níveis recorde superiores a 7 milhões bpd, o que, juntamente com um aumento da produção local, tem visto a oferta de petróleo bruto superar a demanda doméstica. Esse movimento sugere, portanto, que o ritmo de enchimento das tancagem é intenso, aproveitando os preços relativamente baixos do petróleo, quando analisado à luz dos últimos dez anos.

África do Sul¹²

A economia da sul-africana depende da disponibilidade de energia para o crescimento da economia e o desenvolvimento. Em 2015, a economia sul-africana consumiu 649 mil bpd de petróleo, com 90% do setor de transportes dependente de combustíveis líquidos. O setor de petróleo é um importante componente do PIB e as restrições e/ou interrupções no fornecimento de produtos de petróleo frequentemente resultam em perdas econômicas.

Segundo o Departamento de Energia sul-africano, a perda econômica diária estimada devido à falta de combustíveis seria, em Rands, de R 925 milhões em valores de 2005 (US\$ 145 milhões, equivalente a cerca de 10% do PIB diário sul-africano à época). Isso levanta uma questão fundamental sobre o papel do governo para colocar em prática uma política estratégica global, de longo prazo, com ações que permitam ao país a continuidade de abastecimento de combustíveis líquidos, caso ocorram restrições, interrupções ou catástrofes.

O Fundo Estratégico de Combustíveis (SFF) é uma subsidiária do Fundo Central de Energia (CEF), o qual é estatal e custeia os estoques estratégicos. Foi estabelecido em 1965 para coordenar a aquisição e o gerenciamento de estoques estratégicos na África do Sul. Até início de 1990, enquanto foi encarregado das compras de todos os suprimentos de petróleo para a indústria sul-africana, o SFF implementou os estoques estratégicos e comerciais. A partir de 1994, passou a administrar os estoques estratégicos de petróleo do governo.

Há uma decisão do governo sul-africano pela manutenção de estoques correspondentes a 60 dias de importação líquida de petróleo e derivados. Adicionalmente, ao longo da cadeia de suprimento, os agentes devem manter estoques de derivados equivalentes a 14 dias de seus respectivos mercados.

40

vi China Oil, Gas and Petrochemicals.

O SFF possui como principal armazenamento de petróleo as instalações na Baía de Saldanha, maior instalação de seu tipo no mundo. É composta por seis tanques de armazenamento subterrâneo de concreto com capacidade combinada de 45 milhões de barris. Os tanques estão ligados por dutos a um terminal no porto de Saldanha¹³.

3.1.2.3 Comparação de políticas de reservas estratégicas conforme nível de dependência de petróleo

A Tabela 4 apresenta indicadores selecionados e consolida a posição das principais economias mundiais no que se refere à formação de reservas estratégicas de petróleo. Juntos, os países abaixo listados representam, frente ao planeta, 60% da população, 81% da riqueza, 74% do consumo energético e 73% do consumo de petróleo. A ordem dos países segue o critério do tamanho da economia sob a ótica do Produto Interno Bruto (PIB).

Tabela 4 — Maiores economias mundiais e sua situação quanto à exportação líquida de petróleo e formação de reservas estratégicas de petróleo - REP

País	PIB (10 ⁹ US\$) (2014)	Consumo energia (10 ⁶ tep) (2014)	Consumo petróleo ⁽¹⁾ (10 ³ bpd) (2015)	Exportador líquido? ⁽²⁾	Possui REP?
Estados Unidos	<u>`</u> <u>`</u>		19.396	NÃO	SIM
China	10.380	3.052	11.968	NÃO	SIM
Japão	4.616	442	4.150	NÃO	SIM
Alemanha	3.860	306	2.338	NÃO	SIM
Reino Unido	2.945	179	1.559	NÃO	SIM
França	2.847	243	1.606	NÃO	SIM
Brasil	2.353	303	3.157	SIM	NÃO
Itália	2.148	147	1.262	SIM	SIM
Índia	2.050	825	4.159	NÃO	SIM
Rússia	1.858	711	3.113	NÃO	NÃO
Canadá	1.789	280	2.322	SIM	NÃO
Austrália	1.444	125	1.006	NÃO	SIM
Coreia do Sul	1.417	268	2.575	NÃO	SIM
Espanha	1.407	115	1.226	NÃO	SIM
México	1.283	188	1.926	NÃO	SIM
Indonésia	889	226	1.628	NÃO	NÃO
Holanda	866	73	835	NÃO	SIM
Turquia	806	122	835	NÃO	SIM
Arábia Saudita	753	214	3.895	SIM	NÃO
Suíça	712	25	228	NÃO	SIM
Noruega	500	29	234	SIM	NÃO
Dinamarca	341	16	165	SIM	NÃO

Fonte: AIE, Fundo Monetário Internacional e BP Statistical Review.

Notas:

(2) Considera exclusivamente petróleo e LGN.

Importante observar que países exportadores líquidos de petróleo não possuem reservas estratégicas (Canadá, Noruega e Dinamarca), porém, praticam políticas de controle da produção. No caso do Brasil, a perspectiva é que o País consolide sua posição de exportador líquido de petróleo no horizonte decenal.

Outro aspecto importante a se destacar diz respeito ao nível de dependência de um país frente a novos choques de petróleo. Um indicador da vulnerabilidade pode ser a participação de suas importações de petróleo no volume total de petróleo comercializado no mundo. Tal critério já foi utilizado em análises anteriores da ANP, com o mesmo fito de avaliar a questão de reservas estratégicas brasileiras¹⁴.

No caso do Brasil, em 2015, o País importou 0,5% do petróleo comercializado no mundo, cuja movimentação atingiu 61,2 milhões bpd. Esse volume de importação responde por 16% da demanda das refinarias brasileiras. No entanto, esse montante serve essencialmente para ajuste do mix de petróleo para produção de óleos básicos lubrificantes e combustíveis. Cabe ainda destacar que as exportações de petróleo superam

⁽¹⁾ Considera combustível usado em voos internacionais e navegação de longo curso. Considera o equivalente em petróleo do consumo de etanol e biodiesel.

as importações. Portanto, é razoável considerar como baixa a vulnerabilidade do Brasil a choques internacionais de oferta de petróleo.

3.1.3 Cenário brasileiro

Nesta seção, são apresentados o contexto histórico e a evolução da produção de petróleo no Brasil, bem como suas previsões de produção ao longo do decênio 2016-2025. Apresentam-se, também, os investimentos vultosos necessários para que essas previsões se realizem. Por fim, aborda-se a evolução prevista das reservas provadas e o panorama e as perspectivas de dependência externa de petróleo no País.

O crescimento sustentável da produção de petróleo fundamentado no desenvolvimento tecnológico na área de Exploração e Produção (E&P) conferiu ao País, em 2006, o título de autossuficiente em petróleo. Em 2008, consolidou definitivamente sua condição de exportador líquido de petróleo. Para o horizonte de 2016 a 2025, as perspectivas otimistas de crescimento da produção, as quais indicam que o País manterá a condição de exportador, compõem um dos principais pilares para a análise da necessidade de formação de reservas estratégicas de petróleo no País.

3.1.3.1 Contexto histórico e evolução da produção de petróleo no Brasil

A indústria de petróleo no Brasil passou por grandes transformações desde seu advento, no final do século XIX¹⁵, quando consistia em uma atividade rudimentar, até as recentes descobertas do pré-sal, após sucessivo desbravamento de novas fronteiras exploratórias em terra e mar. O desenvolvimento de novas tecnologias para se produzir petróleo e gás natural teve papel fundamental nessa trajetória.

As explorações pioneiras no Brasil foram realizadas por empresas privadas. A entrada do Estado no setor petrolífero se deu por meio do Serviço Geológico e Mineralógico do Brasil (SGMB), que atuou de 1919 a 1933. Nesse período, foram desenvolvidos importantes levantamentos da estrutura geológica de bacias sedimentares e treinamentos de geólogos brasileiros. Por outro lado, foram realizadas poucas prospecções e perfurações, sem descobertas.

Até então, a Constituição de 1891 definia que o direito de propriedade mantinhase em toda a sua plenitude, salvo a desapropriação por necessidade ou utilidade pública, mediante indenização prévia. Assim, as minas pertenciam aos proprietários do solo. Em 1934, o governo transferiu a tarefa de incrementar as prospecções ao Departamento Nacional da Produção Mineral (DNPM), que recebeu várias atribuições do SGMB. Naquele mesmo ano, a nova Constituição e o Código de Minas^{vii} restabeleceram o princípio dominial, separando a propriedade do solo e do subsolo e reservando ao Estado os direitos sobre os recursos minerais do subsolo¹⁶. As atividades relacionadas ao petróleo foram declaradas de utilidade pública em 1938, e criava-se o Conselho Nacional de Petróleo (CNP)^{viii} para coordenar as atividades nessa área, tendo como braço executor o DNPM.

vii Decreto nº 24.642, de 10 de julho de 1934.

viii Decreto-lei n° 395, de 29 de abril de 1938.

A produção de petróleo em território brasileiro iniciou-se em 1939 com a descoberta do Campo de Lobato, que impulsionou atividade exploratória, embora sem resultados econômicos. A continuação das perfurações, com aprimoramentos nos levantamentos geológicos e geofísicos, resultou na descoberta do primeiro campo comercial em Candeias, em 1941.

Contudo, os esforços de pesquisa realizados de 1938 a 1945 foram insuficientes. A produção de petróleo continuava insignificante se comparada às necessidades de consumo de derivados. Como saldo positivo, as iniciativas^{ix} para transferência de conhecimentos permitiram formar o núcleo da indústria petroleira brasileira¹⁷.

Em 1953, impulsionado pela política nacionalista do Governo Vargas, foi instituído o monopólio estatal da pesquisa, lavra, refino e transporte de petróleo e seus derivados e criava-se a Petrobras para administrar essas atividades^x. Cabia ao CNP exercer o monopólio, em nome da União, das atividades relacionadas ao abastecimento nacional de petróleo e derivados, por meio das funções de orientação, fiscalização e superintendência.

Quando a Petrobras foi instalada, em 1954, a produção de petróleo era de, aproximadamente, 2,7 mil bpd, volume que não atendia nem mesmo à capacidade de processamento de petróleo de 5 mil bpd da Refinaria de Mataripe (BA), a primeira refinaria estatal. As reservas de petróleo eram de apenas 16,8 milhões de barris de óleo equivalente (boe). A Petrobras conseguiu transformar as perspectivas de produção no Brasil superando desafios em novas fronteiras exploratórias, especialmente em águas progressivamente mais profundas.

Em 1963, ocorreu a descoberta do campo terrestre de Carmópolis (SE). Em 1968, Guaricema (SE), que se tornou o primeiro campo de petróleo na plataforma continental brasileira, cuja produção foi iniciada em 1973. Desde então, ocorreram novas descobertas em terra e mar, resultados dos maciços investimentos da Petrobras em exploração e desenvolvimento da produção^{xi,18}. De 1974-1976 destacaram-se importantes campos de petróleo na Bacia de Campos. O Campo de Garoupa foi o primeiro descoberto naquela região, seguido dos Campos de Pargo, Badejo, Namorado e Enchova. Posteriormente, sucessivas descobertas ocorreram em águas marítimas profundas e ultraprofundas^{xii}, nas bacias sedimentares ao longo da costa brasileira. O Programa de Capacitação Tecnológica em Águas Profundas (PROCAP), instituído em 1986, permitiu, em suas diversas fases, o aprimoramento de E&P em águas profundas.

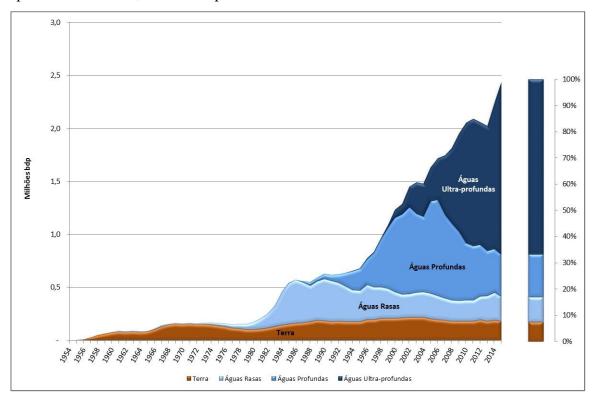
A Emenda Constitucional nº 9/1995 alterou o art. 177 da Constituição Federal de 1988, reiterando o monopólio da União sobre o petróleo, mas permitindo contratar empresas estatais ou privadas, nacionais ou estrangeiras xiii,19, para consecução dessas

^{ix} As iniciativas incluíram a contratação de profissionais estrangeiros com o objetivo de acelerar o mapeamento das áreas sedimentares de diferentes regiões do Brasil e de auxiliar no treinamento de turmas de geólogos, sismólogos, intérpretes de aerofotogrametria, geofísicos e outros profissionais petróleo, além de serem enviados estudantes brasileiros para cursos de engenharia de petróleo no exterior.

x Lei n° 2.004, de 3 de outubro de 1953.

xi Os contratos de serviço de risco ("contratos de risco") foram permitidos de 1975 a 1988. Por esses contratos, as empresas internacionais de petróleo exerceriam, por conta e risco, atividade de E&P em troca de participação nos resultado em caso de sucesso. Todo o petróleo produzido teria de ser entregue à Petrobras nos termos contratados. Contudo, os resultados alcancados foram bastante modestos.

xii Classificação em função da profundidade da lâmina d'água: (a) águas rasas – até 400 metros; (b) águas profundas – até 1.500 metros; águas ultraprofundas – acima de 1.500 metros.


xiii Empresas estrangeiras devem ser constituídas de acordo com as leis brasileiras.

atividades^{xiv}. Em seguida, foi editada a Lei nº 9.478/1997, pela qual se criou a ANP^{xv}, autarquia vinculada ao MME^{xvi}, e se estabeleceram as bases da relação entre a União e as companhias para o desenvolvimento das atividades petrolíferas^{xvii}.

As atividades de E&P no Brasil eram exercidas sob o regime de concessão no âmbito da Lei nº 9.478/1997. A descoberta da província petrolífera do pré-sal no Brasil, em 2007, com grandes volumes recuperáveis de óleo e gás, trouxe a necessidade da constituição de um novo marco regulatório para a indústria brasileira de petróleo. Assim, a atividade de E&P passou a ser exercida nas áreas do pré-sal^{xviii} e em áreas estratégicas, também sob o regime de partilha de produção estabelecido pela Lei nº 12.351, de 22 de dezembro de 2010²⁰.

No período de 1997 a 2015, as reservas provadas brasileiras de petróleo saltaram de 7,1 bilhões para 13,0 bilhões de barris²¹. Nesse mesmo período, a produção anual de petróleo e LGN aumentou de 316 milhões de barris para 992 milhões de barris²², elevando a produção de hidrocarbonetos no Brasil mais que duas vezes em 19 anos.

O Gráfico 13 sintetiza em números a evolução da produção de petróleo brasileira em terra e mar desde a instalação da Petrobras até 2015. A produção manteve-se na ordem de 2,0 milhões bpd de 2009-2013, subiu para cerca de 2,3 milhões de bpd e alcançou 2,4 milhões bpd em 2015. A produção acumulada em 2016, até o mês de agosto, foi de aproximadamente 2,4 milhões bpd²³.

xiv A Lei nº 9.478/1997 regulamentou que as contratações da União poderão ser exercidas mediante concessão ou autorização.

xv O Decreto-lei nº 99.180, de 15 de março de 1990, extinguiu o CNP e criou o Departamento Nacional de Combustíveis (DNC) que por sua vez foi incorporado à ANP.

xvi O MME foi criado pela Lei nº 3.782, de 22 de julho de 1960. A Lei nº 8.028, de 12 de abril de 1990, extinguiu o MME e criou o Ministério da Infraestrutura, transferindo a este último as atribuições do primeiro. O MME voltou a ser criado pela Lei nº 8.422, de 13 de maio de 1992.

xvii A Lei nº 9.478/1997 também instituiu o Conselho Nacional de Política Energética (CNPE).

xviii Apenas os blocos não licitados, exceto as áreas que já haviam sido concedidas a companhias petrolíferas. Nesses casos, foi mantido o regime de concessão para as áreas já outorgadas, respeitando os contratos existentes.

Fonte: EPE

Gráfico 13 – Evolução da produção brasileira de petróleo 1954-2015

A 1ª Rodada de Licitação do Pré-sal foi realizada pela ANP no dia 21 de outubro de 2013. O objeto desse leilão foi o bloco de Libra, localizado em águas ultraprofundas da Bacia de Santos, no polígono do pré-sal, sendo considerado um prospecto de elevado potencial, com reservas da ordem de 8 a 12 bilhões de barris.

Os planos de investimentos em E&P e as perspectivas de incremento da produção de petróleo brasileira nos próximos 10 anos são favoráveis para o setor, mantendo o País na condição de exportador líquido de petróleo, conforme detalhado nas subseções a seguir.

3.1.3.2 Previsões de produção brasileira de petróleo 2016-2025²⁴

Apresentam-se as previsões de produção nacional de petróleo no horizonte de 2016-2025. Tais estimativas são provenientes dos recursos descobertos, com comercialidade declarada (reservas dos campos) ou sob avaliação exploratória (recursos contingentes), e dos recursos não descobertos, com base no conhecimento geológico das bacias sedimentares brasileiras, tanto em áreas já contratadas com empresas quanto em parte das áreas da União (não contratadas).

As previsões de produção representam produções potenciais de petróleo dentro do território nacional. Prevê-se a produção potencial considerando a realização de todas as etapas técnicas da cadeia produtiva do petróleo, levando-se em conta as estimativas de volumes mínimos econômicos e de prazos médios previstos para cada etapa. A produção potencial está condicionada à hipótese plausível de existência de mercado consumidor e/ou de infraestrutura. As previsões de produção também consideram restrições pelo lado da oferta de equipamentos, bem como a questão do cumprimento das exigências contratuais de conteúdo local.

As estimativas de produção de recursos convencionais baseiam-se em Unidades Produtivas (UP), que correspondem às jazidas em produção, desenvolvimento ou avaliação, no caso de recursos descobertos (RD). Para os recursos não descobertos (RND), as unidades produtivas correspondem a prospectos ainda não perfurados por poços pioneiros. Consideram-se UP, com RD ou RND, tanto nas áreas contratadas (por concessão até a Rodada 13, cessão onerosa com a Petrobras, ou por partilha de produção) quanto em parte das áreas da União ainda não contratadas com empresas de E&P.

De acordo com o Novo Marco Regulatório, a área do pré-sal é definida como a "região do subsolo formada por um prisma vertical de profundidade indeterminada, com superfície poligonal definida pelas coordenadas geográficas de seus vértices estabelecidas no Anexo" da Lei nº 12.351/2010. Tal superfície está inserida no contexto das bacias sedimentares de Santos e Campos. Desse modo, o termo pré-sal deve ser qualificado para especificar seus dois sentidos, o legal e o geológico. O Pré-Sal Legal (PSL) corresponde a todo o prisma no interior do polígono definido na lei e inclui uma seção anterior aos depósitos evaporíticos, aqui chamada de Pré-Sal Geológico (PSG), e uma seção posterior, denominada Pós-Sal (POS); a região externa ao PSL é aqui chamada de Extra Pré-Sal Legal (EPSL) e corresponde ao conjunto de todas as UP fora dos limites do polígono legal.

A previsão de produção das unidades produtivas dentro dos limites do PSL é baseada numa concepção desagregada de jazidas e prospectos pela qual cada bloco, em

fase de exploração ou de produção, ou área a ser contratada com a União, pode conter uma ou duas unidades produtivas, dependendo da combinação de recursos descobertos e não descobertos no PSG e no POS.

Para organização espacial das UP em áreas contratadas, utilizaram-se dados georreferenciados de campos e blocos exploratórios disponíveis na página eletrônica do Banco de Dados de Exploração e Produção (BDEP) da ANP²⁵. Para as UP em áreas da União, utilizaram-se mapas de bacias efetivas do estudo Zoneamento Nacional dos Recursos de Óleo e Gás²⁶, combinados com critérios exploratórios.

Os volumes (produzíveis) de petróleo, para efeito das previsões de produção, foram estimados com as seguintes bases, conforme a categoria de UP:

- UP de recursos descobertos com comercialidade comprovada (RT): reservas totais (soma das provadas, prováveis e possíveis) de cada campo de petróleo, conforme registros da ANP referentes a 31 de dezembro de 2014;
- UP de recursos contingentes nas áreas contratadas (RC), com data de referência em 30 de junho de 2015: informações volumétricas contidas nos planos originais de avaliação de descobertas (PAD) em blocos exploratórios submetidos pelas concessionárias à ANP; a depender da disponibilidade de dados, foram utilizadas avaliações de expectativa de fluido e de área de prospectos provenientes do Zoneamento²⁷:
- UP de recursos não descobertos (potencial petrolífero) nas áreas contratadas até 30 de junho de 2015 (RND-E): avaliações do Zoneamento²⁸ para as chances de descobertas comerciais, expectativas de tipos de fluidos e áreas de prospectos nos diversos *plays* exploratórios das bacias sedimentares brasileiras, combinadas com estatísticas de poços exploratórios e volumes de campos descobertos;
- UP de recursos não descobertos na área da União: mapas de *plays* efetivos do Zoneamento²⁹, estimativas volumétricas dos prospectos postulados nos diversos *plays* exploratórios das bacias sedimentares brasileiras, combinadas com estatísticas de poços exploratórios e volumes das jazidas de campos descobertos.

A Figura 16, baseada no estudo Zoneamento³⁰, apresenta a distribuição geográfica das UP de recursos convencionais em áreas contratadas (RT, RC e RND-E) e das áreas de bacias efetivas da União contendo UP que poderão ser projetadas para contratação no período dos estudos do ciclo 2016-2025.

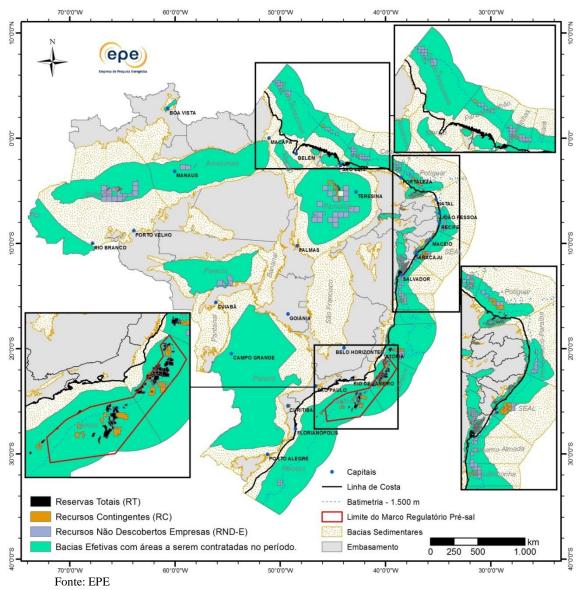


Figura 16 – Bacias efetivas nas áreas da União e UP em áreas contratadas com recursos descobertos (RT e RC) e não descobertos (RND-E) convencionais segundo os estudos do ciclo 2016-2025

De modo consistente com as previsões de produção, assumiram-se considerações estratégicas e econômicas sobre: evolução de reservas e da relação R/P (razão entre reserva provada e produção); demandas por FPSO (floating, production, storage and offloading) e conteúdo local na aquisição de bens e serviços; investimentos em E&P; e possíveis excedentes de petróleo.

O processo de elaboração das projeções de produção de petróleo dos estudos do ciclo 2016-2025 foi iniciado em meados de 2015 e encerrado no início do primeiro trimestre de 2016.

No Gráfico 14, apresenta-se a previsão de produção potencial diária de petróleo nacional até 2025. A produção sustentada somente nas RT, referidas a 31 de dezembro de 2014, deverá atingir o maior volume em 2023, declinando em seguida. Já a produção oriunda dos RC, sustentados principalmente pelas acumulações do PSG, mantêm sua tendência crescente em todo o horizonte do estudo, chegando a contribuir com cerca de 19% da produção em 2025. A partir de 2020, espera-se o início da produção dos RND-E, porém contribuindo apenas com aproximadamente 3% da produção nacional em 2025. A possível contribuição dos recursos na área da União, dependente da realização de novas

contratações projetadas para este estudo, por concessão ou partilha da produção, é prevista iniciar-se em 2023, e alcançar menos que 1% da produção potencial total em 2025. Em relação ao total, considerando-se todas as quatro fontes de recursos referidas acima, estima-se que a produção em 2025 tenha potencial de ser 97% maior que a registrada em 2015. Estudos preliminares indicam que alterações no setor de E&P e no Boletim de Reservas, influenciarão novas projeções, afetando os resultados aqui apresentados com sua respectiva data de referência.

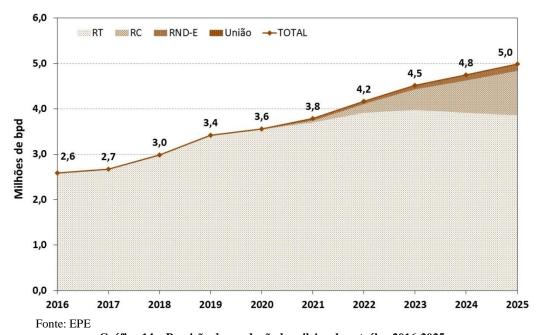
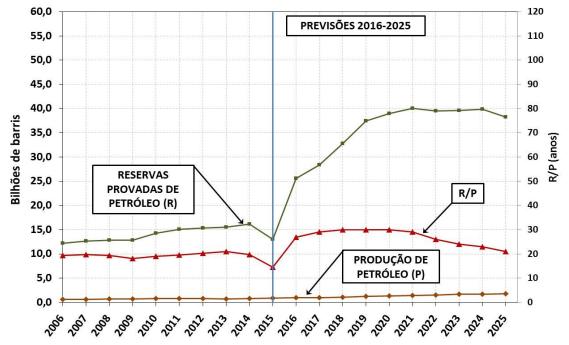


Gráfico 14 – Previsão da produção brasileira de petróleo 2016-2025

3.1.3.3 Investimentos em E&P no Brasil 2016-2025³¹

Prevê-se que os investimentos para as atividades de E&P no Brasil, no horizonte de 2016-2025, fiquem entre US\$ 307 bilhões e US\$ 337 bilhões. Dentro desse montante, considera-se o investimento da Petrobras previsto de US\$ 80 bilhões até 2019, conforme versão do seu Plano de Negócios e Gestão vigente à época da realização deste estudo, cuja revisão aconteceu em 12/01/2016.


Deve-se considerar que também estão implicitamente incluídos nesse montante os investimentos associados à Carteira de Projetos do Plano de Aceleração do Crescimento (PAC) do Governo Federal, no que se refere, principalmente, à exploração e das bacias de Campos e Santos, incluindo as descobertas no pré-sal. Ademais, no decorrer deste estudo até a data atual, ratifica-se que ocorreram eventos econômicos e alterações de investimentos que se destacaram na conjuntura nacional, mas por ocasião do término deste trabalho, serão incluídas em estudos futuros.

3.1.3.4 Evolução das reservas provadas e da R/P do petróleo brasileiro³²

A evolução das reservas de petróleo é uma componente fundamental a ser considerada no contexto do planejamento energético em escala de país. Junto com as previsões de produção, permite avaliar o indicador estratégico R/P (razão entre reserva provada e produção) que fornece subsídios sobre o tempo de esgotamento de reservas.

Apresenta-se a evolução de reservas provadas, segundo dos estudos do ciclo 2016-2025, que consolida as previsões de produção de cada categoria de recurso (reservas, recursos contingentes e recursos não descobertos) abordadas no item 3.1.3.2. Consideram-se estimativas de volumes recuperáveis, previsões de tempos para declarações de comercialidade, realizações de possíveis descobertas, novas contratações de atividades de E&P na área da União, bem como as relações observadas entre as reservas totais e provadas, em nível agregado Brasil, nos últimos 20 anos^{xix}.

O Gráfico 15 mostra a previsão das reservas de petróleo e aponta que o indicador R/P atingirá níveis relativamente altos, entre 22 e 27 anos, no período de 2016-2025.

Nota: As reservas provadas incluem estimativas de recursos contingentes e recursos não descobertos. Fonte: EPE

Gráfico 15 – Evolução das reservas provadas e da R/P do petróleo brasileiro 2006-2025

As previsões de produção de petróleo e a evolução do indicador de R/P não traduzem *per si* sua situação de dependência externa no longo prazo. Todavia, são parâmetros necessários, que se complementam para tratar dessa questão, conforme será evidenciado a seguir.

3.1.3.5 Indicador de exportação líquida de petróleo

A situação da balança entre importação e exportação de petróleo de um país pode ser analisada, inicialmente, por meio de indicadores construídos a partir de dados sobre produção, demanda, importação e exportação. Neste relatório, considerou-se o indicador de exportação líquida.

xix O modelo de evolução de reservas aplicado pressupõe o estabelecimento de metas e restrições compatíveis com níveis históricos da razão R/P e da relação entre reservas totais e provadas do agregado Brasil.

O indicador de exportação líquida pode ser calculado, em bases anuais, por meio da diferença entre a exportação e a importação cujo resultado representa o saldo exportado de petróleo do país.

O Brasil é exportador líquido de petróleo desde 2006, à exceção do ano de 2007. De acordo com os estudos do ciclo 2016-2025, o País será um importante exportador de petróleo^{xx,33}, conforme demonstrado no Gráfico 16. A exportação líquida alcançará o patamar de 2,7 milhões bpd em 2025, caso as previsões de produção e a evolução do indicador R/P sejam confirmados.

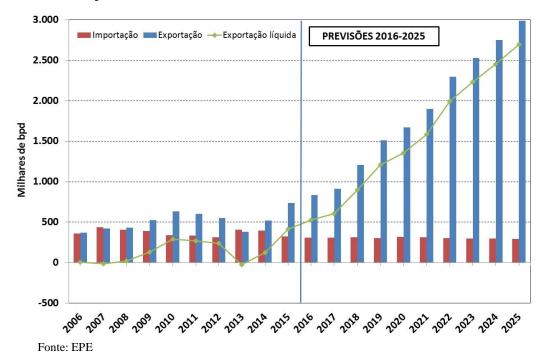


Gráfico 16 – Evolução da exportação líquida de petróleo no Brasil 2006-2025

Cabe destacar que as previsões de importação de petróleo verificadas terão por objetivo, assim como no passado, atender às necessidades tecnológicas das refinarias brasileiras. Utilizam-se petróleos de diversas origens, a exemplo do petróleo Árabe Leve para a produção de óleos básicos lubrificantes parafínicos e outros do tipo leve principalmente para a realização de misturas com os petróleos nacionais, mais pesados, visando à produção de derivados em geral. O Gráfico 17 mostra a evolução crescente da participação do petróleo nacional na carga processada do parque de refino brasileiro. Em 2015, a participação do petróleo nacional foi de 83% xxi.

xx A Arábia Saudita, maior exportadora líquida de petróleo do mundo, exportou 7,2 milhões bpd em 2014, seguida da Rússia com 4,9 milhões bpd e do Iraque com 3,0 milhões bpd. Emirados Árabes, Canadá, Nigéria, Venezuela e Kuwait exportaram respectivamente de 2,4 a 2,0 milhões bpd no mesmo ano. Outros países, como Angola, México e Noruega, exportaram de 1,7 a 1,2 milhão bpd.

xxi "Outras cargas" inclui resíduos de petróleo, resíduos de terminais e resíduos de derivados que são reprocessados nas unidades de destilação atmosféricas juntamente com as cargas de petróleo e condensado. Em 2015, a participação de "outras cargas" foi de 3%.

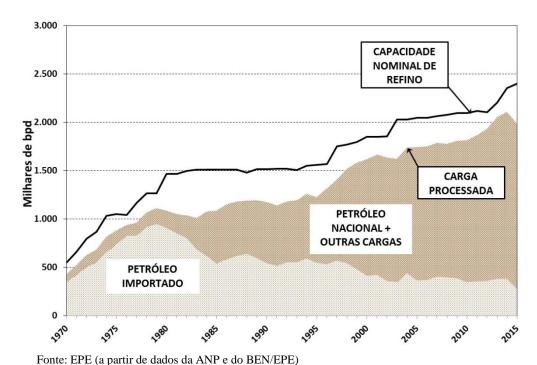


Gráfico 17 – Evolução da participação do petróleo nacional na carga processada das refinarias 1970-2015

Apresentam-se, a seguir, as projeções de participação do petróleo nacional na carga processada das refinarias entre 2016 e 2025, considerando-se as previsões de produção de petróleo nacional, bem como a capacidade instalada atual do parque de refino e as adições de capacidade, com base nos dados dos estudos do ciclo 2016-2025. Cabe ressaltar que a participação do petróleo nacional no consumo das refinarias aumentará no horizonte de 2016-2025, devido às previsões de produção de petróleos mais leves que substituirão, em parte, o petróleo importado atualmente. A participação atingirá o patamar de 87%.

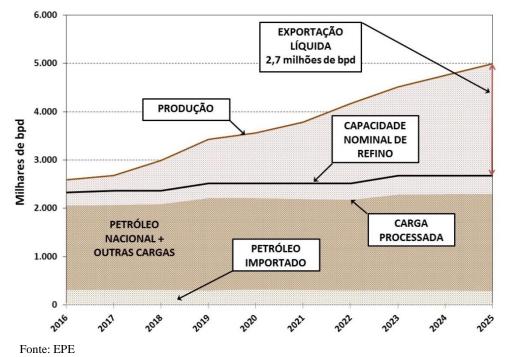


Gráfico 18 - Evolução da participação do petróleo nacional na carga processada das refinarias 2016-2025

3.2 Etanol carburante

No histórico da produção e utilização de etanol como combustível no Brasil, faz-se necessário avaliar as diferentes fases da importância relativa desse energético para o abastecimento da frota nacional de veículos leves (ciclo Otto).

A utilização do etanol no Brasil foi acentuada nos anos seguintes ao advento do Programa Nacional do Álcool (Proálcool), em 1975, cuja história será apresentada no item 3.2.1. A partir dos dados do Balanço Energético Nacional³⁴, a participação do etanol na matriz de combustíveis para o ciclo Otto pode ser observada no Gráfico 19.

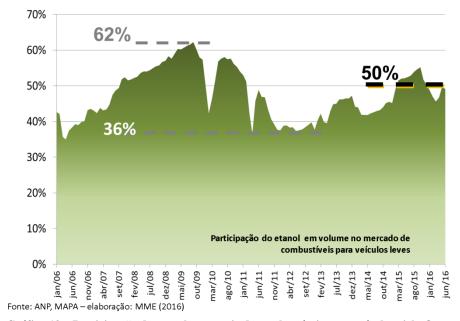


Gráfico 19 – Participação do etanol na matriz de combustíveis para veículos ciclo Otto

3.2.1 Histórico e risco de restrição e/ou interrupção no suprimento de etanol

O Brasil utiliza o etanol combustível como aditivo da gasolina desde a década de 1920. Oficialmente, o combustível produzido a partir da cana-de-açúcar foi adicionado no limite de 5% em volume, à gasolina, então importada, a partir do Decreto nº 19.717, de 20 de fevereiro de 1931. Entretanto, foi somente com o advento do Proálcool, em 1975, que o setor sucroalcooleiro pôde estabelecer definitivamente a indústria do etanol combustível. A oscilação dos preços do açúcar no mercado internacional imporia uma quebra dos investimentos do setor produtivo tanto na etapa agrícola quanto na etapa industrial. Ou seja, para além da questão econômica da crise do petróleo deflagrada em dezembro de 1973, e que se repetiria em 1979, havia um "risco sistêmico" para o complexo agroindustrial por conta da superprodução e dos baixos preços do açúcar.

Esses dois choques no preço do petróleo impactaram o Brasil principalmente porque havia uma forte dependência materializada em duas realidades: (i) 80% do petróleo consumido era então importado; e (ii) 98% do transporte de passageiros e de carga era realizado utilizando-se derivados de petróleo.

O período 1968-73 ficou conhecido como "milagre" econômico brasileiro, em função das extraordinárias taxas de crescimento do PIB verificadas, cuja média era de 11,1% a.a.. Em 1973, o mundo viveu o 1º choque do petróleo, período em que, pela primeira vez, o crescimento exponencial do consumo de petróleo e derivados foi interrompido por um forte aumento dos preços praticados pelos países produtores, o que

agravou o quadro da recessão econômica mundial. A dependência em relação ao petróleo importado causou forte impacto no Balanço de Pagamentos do País e diminuiu o ritmo de crescimento da economia. Por isso, havia a necessidade de reduzir a dependência em relação ao petróleo importado e diversificar a matriz energética buscando fontes alternativas, a principal delas, o etanol combustível.

As alternativas propostas com o novo combustível levaram em conta o fato de que o etanol brasileiro poderia ser produzido a partir da cana-de-açúcar em duas diferentes formas:

- anidro: destinado à mistura com a gasolina; e
- hidratado: destinado a utilização exclusivamente como combustível veicular.

Com isso, o Proálcool foi adotado em 1975 pelo Governo Brasileiro, com dois objetivos:

- promover o incremento do etanol anidro na mistura à gasolina comercializada no País; e
- incentivar o desenvolvimento de plataformas veiculares movidas exclusivamente a etanol hidratado.

Naquele período, após o lançamento do Proálcool, o país consolidou o uso de elevado percentual de mistura de etanol anidro à gasolina comercializada. Inicialmente, o Proálcool previa que o País praticaria a mistura de 20% de etanol anidro à gasolina. No entanto, esse percentual só foi aplicado em todo o território nacional em 1982 por meio da Portaria CNE nº 12, de 5 de janeiro de 1982. Até então, diversas Portarias do CNP fixavam, a cada safra, o percentual de mistura em estados e regiões, estabelecendo os percentuais mínimo e máximo para cada região das bases de distribuição e mercados de gasolina, conforme descrito a seguir na

Tabela 5.

Tabela 5 – Portarias do CNP com fixação do percentual de mistura vigente após o lançamento do Proálcool e até a adoção de percentual de 20% no território nacional xxii

Ato	N°	Data	% Mínimo	% Máximo	Abrangência Territorial
Portaria CNP	163	04/10/1976	11%	15%	AL e PE
Portaria CNP	164	04/10/1976	10%	15%	RJ
Portaria CNP	5	07/01/1977	10%	15%	Norte do Paraná
Portaria CNP	88	19/05/1977	18%	20%	Região Metropolitana de SP
Portaria CNP	88	19/05/1977	11%	13%	Interior de SP
Portaria CNP	104	06/06/1977	10%	12%	RJ
Portaria CNP	104	06/06/1977	15%	15%	Sup. de Transportes Oficiais do RJ
Portaria CNP	130	21/07/1977	10%	12%	PR
Portaria CNP	142	03/08/1977	10%	12%	CE
Portaria CNP	174	21/09/1977	18%	20%	RN, PB, PE e AL
Portaria CNP	198	20/10/1977	18%	20%	Triângulo Mineiro
Portaria CNP	39	03/02/1978	20%	23%	RN, PB, PE, AL, SE e BA
Portaria CNP	213	26/07/1978	18%	22%	Região Centro Sul (Fixo em 20% ± 2%)
Portaria CNP	325	05/09/1978	18%	22%	Região N/NE (Fixo em 20% ± 2%)
Portaria CNP	157	22/04/1981	10%	14%	Região N/NE (Fixo em 12% ± 2%)
Portaria CNP	245	30/06/1981	10%	14%	Região Centro Sul (Fixo em 12% ± 2%)
Portaria CNP	443	17/12/1981	13%	17%	BR (Fixo em 15% ± 2%)
Portaria CNE	12	05/01/1982	18%	22%	BR (Fixo em 20% ± 2%)

Fonte: MME

Como se pode observar, havia grande flexibilidade na adoção de percentuais de mistura, que ora aumentavam, ora abaixavam, de acordo com a disponibilidade do produto a cada safra. Desta forma, evidencia-se que à medida que as pesquisas avançavam na direção do desenvolvimento de uma plataforma veicular movida exclusivamente a etanol, a participação do etanol anidro limitava-se à viabilidade técnica de seu uso em veículos movidos à gasolina, dotados de sistema de alimentação por carburador e ignição convencional.

Considerando-se que o mercado para adição de etanol anidro à gasolina era limitado por restrições técnicas dos veículos nacionais, o principal desafio estava em se obter o desenvolvimento de uma plataforma veicular movida exclusivamente a etanol hidratado. O Centro de Tecnologia Aeroespacial (CTA) teve participação fundamental nesse processo. Situado em São José dos Campos, no estado de São Paulo, o CTA foi o instituto pioneiro na pesquisa e teste dessa plataforma, que forneceu a base técnica para o núcleo do Proálcool. A solução técnica adotada pelos engenheiros do CTA foi acolhida e aprimorada pelas montadoras instaladas no Brasil, e viabilizou o lançamento, já em 1979, do 1º veículo movido exclusivamente a etanol hidratado. A indústria automobilística brasileira aderiu ao programa, oferecendo, na década de 80, um novo produto ao consumidor, produzindo cada vez mais veículos movidos exclusivamente a etanol, os quais atingiram, já em 1986, um percentual de 96% das vendas de veículos novos.

xxii MAPA/MME – Cronologia da Mistura Carburante Automotiva, com adaptações. Obtido em: http://www.agricultura.gov.br/arq_editor/file/Desenvolvimento_Sustentavel/Agroenergia/Orientacoes_Tecnicas/01-Mistura%20etanol%20anidro-gasolina-CRONOLOGIA(Atualiz_02_09_2011).pdf

Cabe destacar que as mudanças nos motores capazes de tornar o veículo apto a rodar com etanol hidratado eram relativamente simples. Muitos consumidores, posteriormente, adaptaram seus veículos movidos à gasolina para receberem o etanol hidratado, combustível mais barato e cujo uso o governo pretendia incentivar.

Para a consecução dos demais objetivos estabelecidos para o programa, e para a preservação do complexo sucroalcooleiro em face à crise de preços do açúcar, o Governo Federal estabeleceu incentivos para o setor lançando mão de diversos instrumentos de controle. Em linhas gerais, foram eles:

- garantia de que o preço do etanol ao consumidor seria sempre menor que o da gasolina;
- garantia de remuneração para o produtor;
- redução de impostos para os veículos movidos a etanol hidratado;
- financiamentos a produtores para aumento da capacidade de produção;
- estabelecimento da obrigatoriedade de oferta do produto pelos postos revendedores em todo o território nacional; e
- manutenção de estoques estratégicos de etanol.

A partir de uma decisão de Estado, o País passava a privilegiar a produção e o uso de um combustível renovável. Para implantar essa decisão, o Poder Executivo acionou a Petrobras. A expertise e a atuação da companhia estatal no abastecimento do mercado de combustíveis no Brasil reservaram à empresa um papel fundamental na realização dos objetivos do Proálcool. Sozinho, o setor sucroalcooleiro não era dotado de instrumentos ou infraestrutura suficientes para garantir o abastecimento do mercado interno em todo o território nacional, o que reduziu significativamente seu campo de atuação. Dessa forma, por decisão do governo à época, a estatal de petróleo foi uma parceira estratégica no processo de consolidação e viabilização do mercado de etanol combustível no Brasil.

Um aspecto que deve ser lembrado é o fato de que o etanol da cana-de-açúcar é produzido durante um período aproximado de seis a oito meses (período de safra sucroalcooleira), sendo estocado para ser consumido também durante a entressafra. Dessa forma, são necessários instrumentos capazes de garantir o abastecimento em todo o território nacional, os quais, no caso do Proálcool, demandaram, à época, uma atuação intervencionista do Estado para controle da produção e dos estoques estratégicos.

A política de preços tabelados para o açúcar e para o etanol, bem como a política de subsídios sempre foram assumidas como estratégicas para o país na "luta para fugir da excessiva e prejudicial dependência externa" de petróleo e de seus derivados.

Os instrumentos de política pública colocados à disposição do setor produtivo durante os primeiros 10 anos do Proálcool viabilizaram a expansão intensiva da produção de etanol principalmente na região do Oeste Paulista e Paraná, além da região do litoral nordestino. Nesse período, o Poder Executivo exercia um controle tanto da produção quanto da comercialização do etanol e do açúcar por intermédio do Plano de Safra e das cotas de produção. Os preços eram controlados pelo governo e buscavam efetivar um equilíbrio da remuneração das unidades produtoras, independentemente do produto, açúcar ou etanol. A exportação de açúcar era também controlada pelo Estado.

Considerando que o preço do etanol à época era tabelado em uma relação de paridade favorável ao combustível renovável, a frota de veículos movidos a etanol cresceu a um ritmo bastante forte devido às vendas de veículos novos. Esse crescimento pode ser explicado, adicionalmente, pela grande quantidade de conversões de motores à gasolina

para motores exclusivamente a etanol à época. Nesse cenário, a demanda no mercado interno cresceu a um ritmo extraordinário no período.

No entanto, na segunda metade da década de 1980, o açúcar passa a perceber uma remuneração maior no mercado internacional e, por não ter recursos suficientes para compensar eventuais perdas para o setor, o Estado não pôde realizar o controle efetivo da produção de açúcar conforme metas estabelecidas nos planos de safra subsequentes. Na safra 1988/89, o País enfrentou uma crise de abastecimento de etanol combustível, motivada pelos seguintes fatores: i) forte aumento da demanda por etanol combustível; ii) inviabilização do planejamento da expansão desejável; e iii) alteração da estratégia comercial das empresas produtoras com aumento da produção de açúcar e redução proporcional da produção de etanol. Durante alguns meses, o Brasil dependeu de importação de metanol e etanol de síntese (oriundo da África do Sul) para abastecer seu mercado interno, o que abalou a confiança do consumidor brasileiro na segurança do abastecimento e, consequentemente, no próprio programa Proálcool.

Assim, a crescente frota de veículos movidos a etanol hidratado demandava das autoridades um esforço contínuo para garantir o abastecimento, sob risco de graves consequências para os consumidores e para a economia.

Com o fim dos governos militares e restabelecimento da democracia, uma nova ordem jurídica foi materializada na Carta Magna de 1988. A reforma do Estado, empreendida pelo país na década de 1990, pretendeu revisar algumas formas de atuação do Estado brasileiro com o objetivo de priorizar as atividades com as quais o país comprometera-se na nova Constituição.

Uma das mudanças foi a extinção do IAA (Instituto do Açúcar e do Álcool), em 8 de maio de 1990, por intermédio do Decreto nº 99.240. O IAA era o órgão do Governo Federal responsável pela gestão das políticas para o setor sucroenergético no abastecimento dos mercados interno de açúcar e de etanol, bem como das exportações, administrando as cotas preferenciais para os produtores brasileiros.

A frota nacional de veículos leves contava, à época, com elevada participação de veículos movidos exclusivamente a etanol hidratado (40% dos 11 milhões de veículos leves, ou 4,4 milhões de veículos). Após uma década de incentivos à produção dos veículos a etanol, de subsídios ao produtor e de preços controlados, o etanol chegou a atender quase 55% da matriz de combustíveis para veículos leves (ciclo Otto) e 26% da matriz nacional de combustíveis (ciclo Diesel incluído). Se, em seu pico, em 1989, a frota de veículos movidos a etanol hidratado correspondia a 43% da frota de veículos leves, ao final de 2002, esse caía para abaixo de 10%.

Em 2002, o Poder Executivo tentou incentivar, por meio de uma Lei sancionada em dezembro de 2002 (Lei nº 10.612, de 23 de dezembro de 2002), a aquisição de veículos movidos a etanol. Todavia, os meios utilizados não foram suficientes, uma vez que se concedia subvenção (pequena) na forma de desconto sobre o preço de venda do veículo no ato da aquisição pelo consumidor. A concessão dessa subvenção econômica estava condicionada ao ingresso de eventuais recursos recebidos do exterior ou à existência de recursos orçamentários para essa finalidade. Na realidade, havia, claramente, uma baixa expectativa do setor quanto ao alcance dessa medida, dada a conjuntura macroeconômica do País à época.

Em janeiro de 2003, a frota que demandava o etanol hidratado estava sendo gradativamente sucateada e não havia perspectivas para a sua renovação ou expansão. Naquele ano, registrou-se o menor volume de produção (e de consumo) de etanol hidratado em 22 anos. Entretanto, com o advento da tecnologia de veículos *flex-fuel* (bicombustíveis), o consumo de etanol hidratado inverteu sua tendência de queda ainda

na Safra 2003/04. Atualmente, a frota de veículos leves, licenciados até dezembro de 2014 que podem fazer uso do etanol hidratado ou gasolina totalizava 24 milhões de veículos, correspondendo a 61% da frota nacional (39 milhões de veículos). O consumo total de etanol hidratado no mercado interno brasileiro durante o ano de 2015 é estimado em 18 milhões de m³, contra 4 milhões consumidos pelo mercado interno na safra 2002/03.

Com relação ao histórico de utilização do etanol anidro, destinado à mistura à gasolina, cabe destacar a publicação da Lei nº 8.723, de 28 de outubro de 1993. Esta lei, de caráter ambiental, dispõe sobre a redução de emissão de poluentes por veículos automotores. Em seu art. 9º, fixa o percentual de mistura de 22% de etanol anidro em toda a gasolina comercializada no País.

Como mencionado anteriormente, a crise de abastecimento de 1989 afetou a credibilidade do consumidor em relação ao Proálcool. As vendas de veículos a etanol hidratado passaram a cair ano a ano e, na década de 1990, os veículos movidos à gasolina passam a ser preferidos pelo consumidor brasileiro.

Com isso, a participação do etanol hidratado na matriz de combustíveis diminuiu sucessivamente, ao mesmo tempo que aumentou a importância do etanol anidro, uma vez que este era o oxigenante da gasolina nacional, adicionado em proporção fixa.

A partir das necessidades crescentes de etanol anidro para atender a demanda do mercado de ciclo Otto, uma eventual quebra de safra ou uma redução mais significativa da produção poderia comprometer o abastecimento de gasolina. Desta forma, em 1998, o Governo editou a Medida Provisória nº 1.662, de 28 de maio de 1998, alterando a Lei nº 8.723/1993, estabelecendo uma banda (de 22 a 24%) para a mistura de etanol anidro. Posteriormente, essa flexibilidade foi aumentada, por meio da Lei nº 10.464, de 24 de maio de 2002, permitindo ao Governo Federal fixar o percentual de mistura entre 20 e 25%. Em diversos momentos, o Poder Executivo lançou mão desse instrumento para compatibilizar a demanda por gasolina à oferta de etanol anidro, garantindo, assim, o abastecimento nacional sem prejuízos ao consumidor.

Desde a publicação da Lei nº 8.723/1993, as montadoras brasileiras projetam veículos com base no percentual de 22% de anidro misturado à gasolina. Com a possibilidade de alteração desta proporção, os motores admitem uma variação percentual para cima ou para baixo sem alteração da dirigibilidade.

Atualmente, por meio da Lei nº 12.490, de 16 de setembro de 2011, a qual alterou a Lei nº 8.723/1993, o Poder Executivo pode elevar o referido percentual de mistura do etanol anidro na gasolina até o limite de 25% (vinte e cinco por cento) ou reduzi-lo a 18% (dezoito por cento).

Em 2014, o Ministério de Minas e Energia solicitou à Petrobras que realizasse em seu Centro de Pesquisas a avaliação dos impactos decorrentes do aumento do teor de mistura de etanol anidro misturado à gasolina comercializada no País.

Foi constituído, para esta finalidade, um Grupo de Trabalho coordenado pelo MME com a participação dos técnicos da Petrobras, representantes do Governo Federal e das associações dos fabricantes de veículos automotores, dos fabricantes de motociclos e dos produtores de etanol.

Os resultados dos testes realizados pelo CENPES/Petrobras não apontaram qualquer problema técnico decorrente da utilização de gasolina com 27,5% de etanol anidro, atestando a viabilidade técnica e ambiental deste novo teor de mistura. Por essa razão, o Governo Federal decidiu pelo aumento do percentual de mistura para 27%, ora vigente em todo o território nacional para a gasolina comum. A gasolina premium, de 95

octanas e cuja comercialização é da ordem de apenas 8 mil m³/mês, permanece com a mistura de 25%.

Em resumo, os históricos do Proálcool e da utilização de etanol na matriz de combustíveis para o ciclo Otto demonstram que o País enfrentou diferentes riscos de restrição ou interrupção no suprimento:

- quebra de safra com redução da oferta de etanol hidratado, ou expansão da produção em ritmo inferior ao crescimento da demanda, com risco de restrição ou interrupção no suprimento de combustível para parcela significativa da frota de veículos (décadas de 1980 e 1990);
- 2) quebra de safra com redução da oferta de etanol anidro para mistura à gasolina comercializada no País, ou expansão da produção em ritmo inferior ao crescimento da demanda, com risco de restrição ou interrupção no suprimento de gasolina para a frota nacional de veículos leves (final da década de 1990 e anos 2000);
- 3) exportação de etanol para mercados expressivos (EUA, União Europeia), cada vez mais demandantes de biocombustível para redução de emissões (após 2004); e
- 4) alteração da estratégia comercial das unidades produtoras face a oportunidade de maior participação no mercado internacional de açúcar, diminuindo a oferta de matéria-prima (cana-de-açúcar) para a produção de etanol (em todo o período analisado).

3.2.1.1 Eventos críticos externos

Considerando-se que a participação do etanol sob ambas as formas (anidro e hidratado) é bastante expressiva, diversos riscos externos podem comprometer o abastecimento regular ou alterar os preços dos combustíveis, com consequências para os consumidores e para a economia.

Os seguintes riscos externos podem ser elencados:

- 1) abertura ou fechamento de mercados internacionais ao etanol brasileiro (exportações e/ou importação);
- 2) políticas de incentivo com o estabelecimento de mandato de utilização de etanol em mercados relevantes; e
- 3) expectativa de grande variação dos preços futuros no mercado de açúcar.

Podemos afirmar que as possibilidades de que o etanol se transforme em uma commodity internacional estão intimamente relacionadas à existência de instrumentos de política e de mercado que facilitem as transações nos mercados físicos e futuros. No caso do etanol anidro, existe uma compatibilidade nas especificações que tem viabilizado a comercialização em volumes expressivos sem, no entanto, caracterizar uma padronização de contratos ou especificações nos principais mercados.

Há, nesse contexto, razões suficientes para crer que o etanol pode se transformar em combustível relevante utilizado em adição à gasolina em escala global pelo lado da oferta. O fato de que são poucos os países em desenvolvimento autossuficientes em petróleo ou derivados constitui importante incentivo econômico para esta substituição.

Com isso, as políticas de incentivo com o estabelecimento de mandato de mistura têm proliferado em diversos países para atender a compromissos não só econômicos, mas,

principalmente, ambientais. O Quadro 1 lista os mandatos para biocombustíveis adotados por diversos países, incluindo Canadá, China e Estados Unidos.

 $Quadro\ 1-Mandatos\ nacionais\ e\ locais\ (provinciais)\ para\ etanol\ e\ biodiesel\ vigentes^{35}$

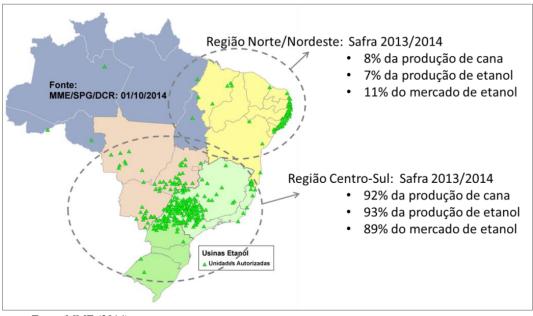
País	Mandato
África do Sul	E2 e B5 a partir de outubro/2015
Angola	E10
Argentina	E5 e B7 (Existe previsão legal para B10, que não está sendo cumprida)
Austrália	Provincial: E4 e B2 em New South Wales; E5 em Queensle
Bélgica	E4 e B4
Brasil	E18–27,5 e B7
	Nacional: E5 e B2. Provincial: E5 e B4 em British Columbia; E5 e B2 em Alberta; E7,5
Canada	e B2 em Saskatchewan; E8,5 e B2 em Manitoba; E5 em Ontario
Chile	Tem política para a utilização de E5 e B5 (ainda não entrou em vigor)
China	E10 em nove províncias (governo sinaliza possibilidade de E10 nacional até 2020)
Colômbia	E8
Coréia do Sul	B2
Costa Rica	E7 e B20
Equador	B5
Etiópia	E5
Filipinas	E10 e B2
_	
Fiji	Autorização para B5 e E10. Mandatos deveriam ter entrado em vigor desde 2013.
Guatemala	E5
Índia	E5 (ampliará para E10 tão logo tenha produção capaz de garantir o abastecimento)
Indonésia	B2-2,5 e E3
Jamaica	E10
Malavi	E10
Malásia	B5 (B7 a partir de dezembro/14)
México	E2 em Guadalajara (será expandido para Cidade do México e Monterrey)
Moçambique	E10; E15 em 2016–2020; E20 em 2021
Panamá	E5 (E7 após abril/15 e E10 após abril/16)
Paraguai	E24 e B1
Peru	B2 e E7,8
Filipinas	E10 e B2
África do Sul	E10
Coréia do Sul	B2,5
Sudão	E5
Tailândia	E5 e B5
Taiwan	B1
Turquia	E2
•	Nacional: O Renewable Fuels Standard 2 (RFS2) requererá 136 bilhões de litros (36 bilhões de galões) de biocombustíveis a serem misturados a combustíveis de transporte em 2022. Estadual: E10 em Missouri e Montana; E9–10 na Flórida; E10 no Havaí; E2 e B2 em Louisiana; B5 em Massachusetts; E10 e B10, e E20 em 2015 em Minnesota; B5 no
Estados Unidos	Novo México; E10 e B5 em Oregon; B2 um ano após a produção local de biodiesel alcançar 40 milhões de galões, B5 um ano após 100 milhões de galões, B10 um ano após 200 milhões de galões, e B20 um ano após 400 milhões de galões na Pensilvânia; E2 e B2, aumentando para B5 180 dias após a produção local de matérias primas e capacidade de esmagamento puderem atender a requerimento de 3% em Washington.
União Europeia	Diretiva de utilização de 5,75% de biocombustíveis está em vigor e estava planejada a utilização de 10% até 2020; É possível que haja alguma redução desta previsão legal para o ano de 2020, a partir de decisão do Parlamento Europeu.
Uruguai	B2; E5 em 2015
Vietnã	E5
Zâmbia	E10 e B5
Zimbábue	E5, que deverá ser aumentado para E10 e E15

Elaboração: MME (2014) – Fonte: REN21; RFA; Global Renewable Fuels Alliance; AIE.

A maior ou menor participação do etanol produzido no Brasil dependerá dos fluxos de comércio internacional e da maior ou menor abertura desses mercados ao produto brasileiro.

As variações abruptas nos preços do mercado de açúcar influenciam sobremaneira as decisões comerciais das unidades de produção. Devido à flexibilidade na produção de açúcar e/ou etanol, as unidades industriais a cada safra procuram maximizar os ganhos e elevar a remuneração por tonelada de cana processada. Por isso, sempre que o mercado para o açúcar torna-se demandante do produto brasileiro, são esperadas reduções na oferta de etanol, embora esta redução tenha limite técnico.

3.2.1.2 Eventos críticos internos


De acordo com a Companhia Nacional de Abastecimento (Conab), o Brasil deverá produzir 655 milhões de toneladas de cana-de-açúcar nesta safra em cerca de 8,95 milhões de hectares. A estimativa é que a produção do país tenha um incremento de 3,2% em relação à safra passada e só não é maior em razão da leve redução de área plantada no país e a produtividade nos canaviais de São Paulo, maior estado produtor, se recuperam de um impacto hídrico da safra passada.

Nesta safra o aumento de produção é uma característica das duas grandes regiões do país, a Região Centro-Sul e a Região Norte e Nordeste. Na Região Centro-Sul a recuperação da produtividade (aumento de 4%) reflete numa expectativa de aumento de produção (3,2%), só não é mais acentuado porque haverá basicamente uma leve redução na área plantada (0,7%).

Na Região Norte e Nordeste a cultura da cana-de-açúcar na safra 2014/15 se recuperou de uma forte seca em duas safras (2012/13 e 2013/14) e em função do prognóstico de bom regime climático, registrou um acréscimo na produtividade daquela safra da ordem de 2,2%, além de um aumento na área plantada (0,8%), o que reflete num aumento de produção de 3,1% em relação à safra 2014/15. A safra 2015/16 manteve estes ganhos de produtividade para a região.

3.2.2 Cenário brasileiro

O complexo de produção sucroenergética no Brasil compõe-se de uma estrutura produtiva que compreende: 383 unidades produtoras, distribuídas conforme a Figura 17; 70 mil produtores de cana-de-açúcar; 1,2 milhão de empregos diretos; PIB setorial da ordem de US\$ 48 bilhões e exportações que totalizam US\$ 15 bilhões. Este quadro não se alterou desde a safra 2013/14 e permanece para a atual safra, no que se refere ao quantitativo de unidades produtoras e na distribuição regional.

Fonte: MME (2014)

Figura 17 – Distribuição das usinas produtoras de etanol no Brasil

Existem duas principais regiões produtoras, as quais abrangem regiões geográficas com características climáticas distintas e que, por isso, têm períodos de safra diferentes. A principal região produtora é denominada Região Centro-Sul, responsável por mais de 90% da produção e do consumo de etanol combustível, cuja safra ocorre entre os meses de abril e novembro. A outra região, Norte-Nordeste, é responsável pela produção de cerca de 10% da cana-de-açúcar e de etanol, cuja safra ocorre entre os meses de setembro e março.

Com o objetivo de proceder à organização da expansão da produção de cana-deaçúcar no Brasil, para fazer frente à demanda crescente pelo etanol, o Governo Federal concluiu, em 2009, o Zoneamento Agroecológico da Cana-de-Açúcar (ZAE Cana), um criterioso estudo do clima e do solo das regiões brasileiras que inovou ao considerar aspectos ambientais, econômicos e sociais para orientar esta expansão sustentável da produção de cana-de-açúcar e os investimentos no setor sucroalcooleiro. O objetivo do ZAE Cana foi o de orientar o futuro da produção de etanol no País, propiciando um crescimento equilibrado e sustentável da produção da cana-de-açúcar. O ZAE veda a supressão de vegetação nativa para a expansão da cultura canavieira em todo o território nacional e a expansão da cana-de-açúcar nos biomas Amazônia, Pantanal e Bacia do alto Paraguai priorizando o cultivo em áreas degradadas ou de pastagem. O ZAE Cana concluiu que 64 milhões de hectares estão aptos para o plantio da cana-de-açúcar, sendo que, atualmente, a cana-de-açúcar destinada à produção de etanol corresponde a cerca de 4 milhões de hectares, 1% das terras aráveis.

Além da expansão das áreas agrícolas para a produção de etanol, a infraestrutura para escoamento da produção para os principais mercados (interno e externo) tem recebido recursos para investimentos em empreendimentos emblemáticos.

Para a infraestrutura de transporte dutoviária, destaca-se o Sistema Logístico de Etanol GO-MG-SP, de iniciativa da Petrobras, Copersucar, Cosan, Odebrecht Transporte Participações, Uniduto e Camargo Correa. O projeto possui dois trechos em operação e investimento adicional de R\$ 1,9 bilhão. O primeiro trecho do alcoduto, que interliga as cidades de Ribeirão Preto e Paulínia, no estado de São Paulo, foi concluído no primeiro semestre de 2013, tendo iniciado sua operação em Agosto de 2013. Um segundo trecho, que interliga as cidades de Ribeirão Preto e Uberaba, entrou em operação a partir de 01

de abril de 2015. O etanolduto, composto por estes dois trechos, possui 350 km de extensão e capacidade para movimentar 12 bilhões de litros de etanol.

Desde 2006, principalmente, a demanda por combustíveis para o ciclo Otto tem crescido a taxas muito superiores às do PIB, o que tem exigido das autoridades governamentais, dos produtores e dos distribuidores um esforço considerável para garantir o abastecimento regular de combustíveis. O Gráfico 20 apresenta a demanda mensal para o mercado ciclo Otto no período de 2006 a 2016.

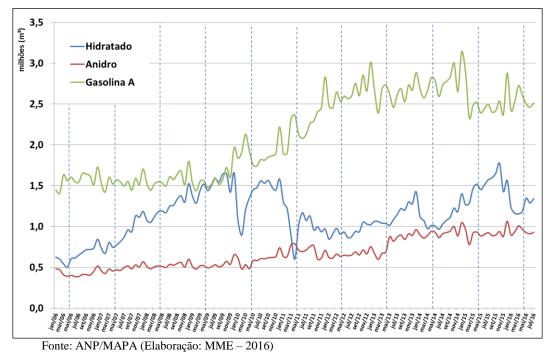


Gráfico 20 – Demanda mensal para o mercado ciclo Otto (2006-2016) (m³ de gasolina equivalente)

Contrastando com o expressivo crescimento na demanda, o Brasil enfrentou restrições à oferta de etanol, principalmente em 2011.

Devido à elevada participação dos veículos *flex-fuel* na frota brasileira, o planejamento energético deve se basear na demanda anual de combustíveis para o mercado ciclo Otto, expresso em m³ de gasolina equivalente, uma vez que a relação de preços entre os combustíveis será o fator determinante para a escolha do consumidor entre etanol hidratado ou gasolina C.

No Gráfico 21 é apresentada a evolução recente da variação anual da demanda por combustíveis para o ciclo Otto. A retração verificada na economia está refletida na interrupção do crescimento verificado nos últimos anos. Contribui para este resultado a diminuição das vendas de veículos novos, o que afeta a projeção da demanda para os próximos anos.

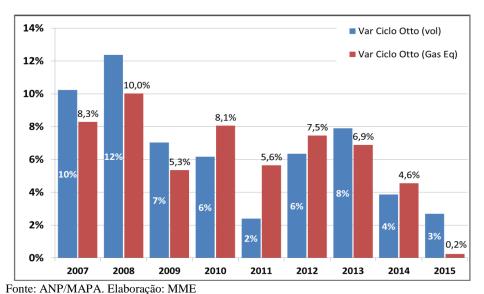


Gráfico 21 – Evolução da variação da demanda por combustíveis para o mercado ciclo Otto (2007-2015)

3.2.2.1 Produção, estoques e dependência externa de etanol

A produção de etanol encontrava-se em processo de recuperação após período de restrições climáticas até a safra 2014/2015, quando a ocorrência de seca prolongada na Região Centro-Sul interrompeu esta curva de crescimento provocando uma retração na oferta de cana-de-açúcar. O processo de renovação dos canaviais e a redução das perdas decorrentes do processo de mecanização, resultante do aprimoramento de técnicas de plantio e colheita, aliados à expansão de área até a safra 2015/16 para a região Centro-Sul e a melhores índices de ATR, possibilitaram uma redução do impacto da quebra de safra na oferta de etanol. A atual safra, com melhores preços para o açúcar, reduziu a oferta de etanol, sem, entretanto, afetar o abastecimento do biocombustível.

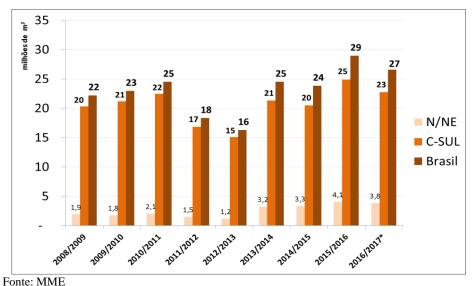


Gráfico 22 – Evolução recente do mercado de etanol combustível no Brasil

Mesmo com as restrições de oferta verificadas nas safras 2009/10 e 2011/12, não houve desabastecimento de etanol hidratado no período analisado. O principal fator que contribuiu para esta acomodação do mercado foi o perfil da frota de veículos, que foi alterado com o advento dos veículos *flex-fuel*. Com isso, ao contrário do proprietário de

veículos movidos exclusivamente a etanol hidratado, que não podia optar por combustível substituto para o seu veículo, o proprietário de veículos *flex-fuel* pode fazê-lo a qualquer momento, com gasolina C ou com etanol hidratado em qualquer proporção.

Com relação à dependência externa de etanol, o Brasil importou etanol entre os anos 1990 e 1998. Nesse período, predominava a frota de veículos movidos a etanol hidratado. Foi nesse contexto que o País apresentou a necessidade de constituição de reserva estratégica, de modo a evitar a ocorrência de falta de produto para a frota nacional de veículo leves.

De acordo com o Gráfico 23, as exportações têm representado, nos últimos anos, parcela significativa da produção de etanol. Por isso, a incorporação de novos mercados sem a correspondente expansão da produção nacional de etanol constitui potencial evento crítico ao seu abastecimento regular. No entanto, mesmo tendo ocorrido no passado recente eventos climáticos que restringiram a produção, não foram necessárias medidas de retenção do produto exportado ou de quebra de contratos para atendimento do mercado interno.

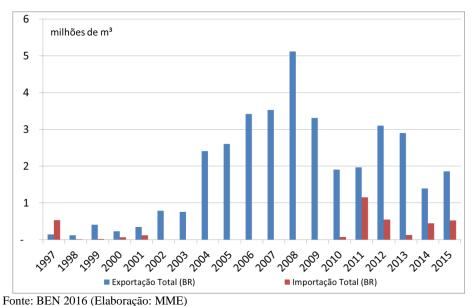


Gráfico 23 – Importação e exportação de etanol (1997-2015)

4 Análise da necessidade de reservas estratégicas no Brasil

O presente capítulo analisa a necessidade da formação de reservas estratégicas de petróleo e etanol carburante no Brasil, com base nas informações contidas neste relatório.

Para petróleo, utiliza-se uma metodologia de análise qualitativa dos riscos de modo a avaliar a influência dos ambientes interno e externo na disponibilidade de petróleo. Ainda para petróleo, apresenta-se parte da análise quantitativa dos riscos relacionada aos custos de formação e manutenção das reservas, que deve ser complementada com a avaliação do impacto na economia de uma eventual indisponibilidade do produto. Quanto ao etanol, a análise leva em consideração a atual configuração de nosso mercado consumidor.

4.1 Petróleo

Conforme projeções dos estudos do ciclo 2016-2025, a produção de petróleo no Brasil é superior à demanda de derivados em todo o período analisado. Desta forma, é possível afirmar que o País é autossuficiente em petróleo e consolida-se como exportador líquido de petróleo. Observa-se que, apesar de a curva de produção no horizonte 2025 apresentar-se inferior à do PDE 2024, a curva de excedente apresenta-se superior, em decorrência da redução da demanda por derivados no país.

RECURSO:	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
PETRÓLEO	milhões de barris diários										
Produção Potencial	2,4	2,6	2,7	3,0	3,4	3,6	3,8	4,2	4,5	4,8	5,0
Demanda Estimada	2,2	2,3	2,3	2,3	2,4	2,5	2,5	2,6	2,7	2,8	2,9
Excedente	0,2	0,3	0,4	0,7	1,0	1,1	1,3	1,6	1,8	2,0	2,1

Tabela 6 - Produção potencial e demanda estimada de petróleo no Brasil

A condição do País de exportador líquido de petróleo é o principal elemento na indicação da não necessidade de constituição de reservas estratégicas de petróleo. Nos tópicos subsequentes é apresentada análise complementar, considerando riscos relativos à garantia da disponibilidade de petróleo para o suprimento do parque de refino do País, no horizonte de 2025.

Cabe ressaltar que o Brasil possui capacidade de refino inferior à demanda do mercado interno de derivados de petróleo, o que implica em importação de derivados, tais como GLP, nafta, gasolina A, QAV e óleo diesel A.

4.1.1 Avaliação dos riscos e efeitos decorrentes de problemas no suprimento de petróleo

Neste estudo, a abordagem da avaliação dos riscos foi efetuada com o uso da metodologia de AQR³⁶, tendo por objeto a disponibilidade de petróleo para o suprimento do parque de refino do País. Desta forma, como primeiro passo foi efetuado o levantamento e classificação dos riscos, conforme apresentado na Figura 18.

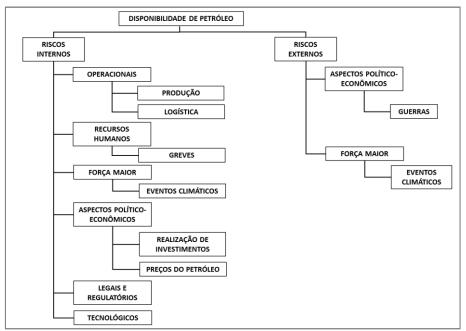


Figura 18 - Riscos à disponibilidade de petróleo para o suprimento do parque de refino do País

A cada risco identificado, foi atribuído um nível – "alto", "médio" ou "baixo" – conforme a probabilidade de materialização do risco, e avaliou-se o impacto resultante sobre o objeto do estudo, a disponibilidade de petróleo para o suprimento do parque de refino do País. A relevância de cada risco foi calculada por meio do resultado do produto entre probabilidade e impacto, adotando-se a convenção ilustrada no Quadro 2, para o caso das ameaças.

Quadro 2 – Matriz de probabilidade e impacto									
Probabilidade	Quantificação Ameaça								
Alta (5)	5	15	25						
Média (3)	3	9	15						
Baixa (1)	1	3	5						
	Baixo (1)	Médio (3)	Alto (5)						
	Impacto								

O Quadro 3 contém um resumo dos riscos identificados e de suas avaliações, conforme metodologia utilizada.

	Quadro 3 – Resultado da Análise Qualitativa de Riscos										
ITEM	RISCO		CONSEQÜÊNCIA (IMPACTO) DO RISCO	PROBABILIDADE	IMPACTO	RELEVÂNCIA					
1	INTERNOS, OPERACIONAIS CONFIABILIDADE EM EQUIPAMENTOS DA PRODUÇÃO DE PETRÓLEO NACIONAL	AM	REDUÇÃO OU INTERRUPÇÃO LOCALIZADA DA PRODUÇÃO DE PETRÓLEO	BAIXA	MÉDIA						
2	INTERNOS, OPERACIONAIS CONFIABILIDADE DA MALHA LOGÍSTICA DE ESCOAMENTO DA PRODUÇÃO NACIONAL EM REGIÃO GEOGRÁFICA ESPECÍFICA	AM	REDUÇÃO OU INTERRUPÇÃO LOCALIZADA DO SUPRIMENTO ÀS REFINARIAS	BAIXA	MÉDIA						
3	INTERNOS, OPERACIONAIS		REDUÇÃO OU INTERRUPÇÃO LOCALIZADA DO SUPRIMENTO ÀS REFINARIAS	BAIXA	BAIXA						
4	INTERNOS, OPERACIONAIS DISTRIBUIÇÃO E FLEXIBILIDADE DA MALHA LOGÍSTICA DE ESCOAMENTO DA PRODUÇÃO DE PETRÓLEO		AUMENTO DA CONFIABILIDADE DO SUPRIMENTO DE PETRÓLEO AO REFINO NACIONAL	ALTA	ALTA						
5	INTERNOS, OPERACIONAIS TENDÊNCIA DO AUMENTO DA CONCENTRAÇÃO DA PRODUÇÃO DE PETRÓLEO NACIONAL NO PRÉ-SAL	AM	DIMINUIÇÃO DA CONFIABILIDADE DO SUPRIMENTO DE PETRÓLEO AO REFINO NACIONAL	MÉDIA	MÉDIA						
6	INTERNOS, OPERACIONAIS PRODUÇÃO NACIONAL DE PETRÓLEO COM EXCEDENTES PARA EXPORTAÇÃO NO PERÍODO EM ESTUDO	OP	AUMENTO DA CONFIABILIDADE DO SUPRIMENTO DE PETRÓLEO AO REFINO NACIONAL	ALTA	ALTA						
7	INTERNOS, RECURSOS HUMANOS GREVE DOS EMPREGADOS DA PRODUÇÃO E ESCOAMENTO DE PETRÓLEO	AM	REDUÇÃO OU INTERRUPÇÃO LOCALIZADA DA PRODUÇÃO DIÁRIA	MÉDIA	MÉDIA						
8	INTERNOS, FORÇA MAIOR OCORRÊNCIA DE INTEMPÉRIES NO TERRITÓRIO NACIONAL	AM	INTERRUPÇÃO LOCALIZADA DA PRODUÇÃO DE PETRÓLEO	BAIXA	MÉDIA						
9	INTERNOS, POLÍTICO-ECONÔMICOS NÃO REALIZAÇÃO DOS INVESTIMENTOS ESPERADOS PARA AUMENTO DA PRODUÇÃO NACIONAL DE PETRÓLEO (DISPONIBILIDADE DE RECURSOS, PREÇOS DO PETRÓLEO E CÂMBIO)	AM	DIMINUIÇÃO DA GARANTIA DE SUPRIMENTO DE PETRÓLEO AO REFINO NACIONAL	BAIXA	MÉDIA						
10	INTERNOS, LEGAIS REGULATÓRIOS MUDANÇA NO MARCO LEGAL E REGULATÓRIO (PRÉSAL E CONTEÚDO LOCAL) AUMENTANDO A ATRATIVIDADE PARA INVESTIMENTOS NA PRODUÇÃO DE PETRÓLEO NO PAÍS	ОР	AUMENTO DA CONFIABILIDADE DO SUPRIMENTO DE PETRÓLEO AO REFINO NACIONAL	ALTA	ALTA						
11	INTERNOS, TECNOLÓGICOS INCERTEZAS TECNOLÓGICAS PARA O DESENVOLVIMENTO DA NOVA FRONTEIRA DE PRODUÇÃO (PRÉ-SAL)	AM	DIMINUIÇÃO DA CONFIABILIDADE DO SUPRIMENTO DE PETRÓLEO AO REFINO NACIONAL	BAIXA	BAIXA						
12	EXTERNOS, FORÇA MAIOR OCORRÊNCIA DE INTEMPÉRIES NO EXTERIOR	AM	REDUÇÃO OU INTERRUPÇÃO LOCALIZADA DA IMPORTAÇÃO DE PETRÓLEO	MÉDIA	BAIXA						
13	EXTERNOS, POLÍTICO-ECONÔMICOS OCORRÊNCIA DE GUERRAS NO EXTERIOR	AM	REDUÇÃO OU INTERRUPÇÃO LOCALIZADA DA IMPORTAÇÃO DE PETRÓLEO	ALTA	BAIXA						

Em linhas gerais, a análise efetuada aponta para <u>baixa relevância</u> para risco de descontinuidade e/ou restrição no suprimento, isto é, ocorrência de interrupção generalizada, com duração superior a 30 dias, nos fluxos de suprimento de petróleo para mais de uma refinaria brasileira.

A condição do País de exportador líquido de petróleo é elemento essencial na redução das consequências dos riscos eventuais de restrição no suprimento de petróleo para as refinarias em curtos períodos. Adicionalmente, a flexibilidade e a amplitude da malha logística de escoamento da produção é resposta eficaz ao risco de interrupção do suprimento. Assim, pode-se concluir que o risco de descontinuidade na cadeia de suprimento é baixo.

Quanto às expectativas de mudanças legais e regulatórias, particularmente no que diz respeito às exigências de conteúdo local e ao modelo para o pré-sal, atualmente em avaliação nas esferas pertinentes, podem resultar no aumento da atratividade para os investimentos na produção de petróleo no País. Desta forma, esse elemento tem potencial de contribuir para a condição do País de exportador líquido de petróleo.

Por outro lado, a expectativa atual de alteração na configuração da indústria de petróleo no país introduz riscos ao suprimento de petróleo para as refinarias no país. Associadas ao aumento da relevância do pré-sal na produção nacional surgem os riscos advindos da maior concentração geográfica da produção e das incertezas tecnológicas inerentes à exploração e produção em áreas de novas fronteiras.

4.2 Etanol

Conforme apresentado no capítulo anterior, evidencia-se que, atualmente, não mais subsistem o contexto e as razões motivadoras da constituição de reservas estratégicas de etanol hidratado. Com a alteração do perfil da frota nacional de veículos leves, que incorporou os veículos *flex-fuel*, e o processo de sucateamento da frota de veículos movidos exclusivamente a etanol, conclui-se que uma eventual restrição na oferta desse combustível não seria capaz de interromper o abastecimento.

Resta, contudo, a necessidade de se garantir o abastecimento regular de etanol anidro. Este combustível tem percentual de mistura com a gasolina estabelecido em lei, e sua eventual falta comprometeria o abastecimento da frota nacional, caso os volumes fossem inferiores à mistura obrigatória.

Dessa forma, em 2013, a ANP consolidou a sistemática para cadastramento e autorização das unidades produtoras de etanol, o que possibilitou aferir e monitorar a capacidade de produção total de etanol no País. Em 2015, a partir dos dados já consolidados pela ANP, constata-se que a capacidade total de produção de etanol (anidro e hidratado) é superior à demanda de etanol anidro no horizonte decenal, considerando um teor de mistura obrigatória de 27%.

Tendo por base as alternativas do consumidor (com a substituição do etanol hidratado pela gasolina C), bem como a possibilidade de redução legal do percentual de mistura de etanol anidro à gasolina, serão avaliados a seguir os riscos e efeitos decorrentes de problemas no suprimento de etanol.

4.2.1 Avaliação dos riscos e efeitos decorrentes de problemas no suprimento de etanol

A partir de dados da Conab, estima-se a capacidade total de moagem de cana do Brasil, ao final de 2015, em cerca de 750 milhões de toneladas de cana-de-açúcar, por

376 usinas em operação. O número de usinas autorizadas pela ANP é de 383. No entanto, devido à restrição da oferta de cana, sua utilização atual está em torno de 85%. Existe também capacidade instalada de produção de etanol e açúcar, cuja ociosidade varia de acordo com a remuneração dos produtos.

O Gráfico 24 mostra a evolução recente das unidades que entraram em operação em contraposição às unidades que fecharam ou entraram em recuperação judicial no mesmo período.

Estima-se que as 122 unidades que entraram em operação entre 2003 e 2013 agregaram cerca de 300 milhões de toneladas de cana-de-açúcar à cadeia produtiva do setor, um aumento superior a 80% na capacidade de produção. Destaca-se que esta expansão ocorreu primordialmente sobre terras com pastos degradados, respeitando o zoneamento agroecológico e sem competição com a produção de alimentos.

Apenas os investimentos industriais realizados para a ampliação da capacidade produtiva desde 2004 são estimados em mais de US\$ 30 bilhões. Mais de US\$ 5 bilhões foram destinados à compra de máquinas e equipamentos para a mecanização da colheita da cana-de-açúcar, atendendo exigências ambientais.

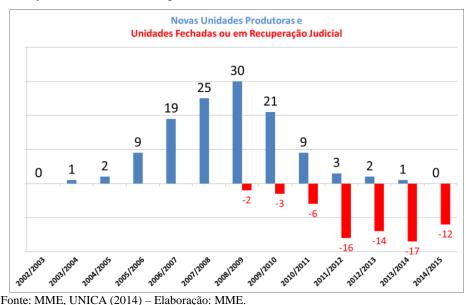


Gráfico 24 – Evolução recente da entrada em operação das novas unidades e unidades fechadas ou em recuperação judicial

O setor sucroenergético brasileiro sofreu os impactos da crise financeira internacional de 2008/2009 e enfrenta o desafio da competitividade. Fatores estruturais, como aumento do custo da terra e da remuneração de mão-de-obra, somaram-se a problemas conjunturais, como clima adverso em safras sucessivas e falta de investimentos na renovação de canaviais, como já abordado neste documento. Neste mesmo período, o Brasil acumulou recordes de crescimento da demanda por combustíveis para veículos leves. Em 2013, a demanda por combustíveis para veículos leves registrou crescimento de 7,5% ao ano. No primeiro semestre de 2014, este número saltou para 10%.

De acordo com representantes do setor, 21 unidades em operação, responsáveis pela moagem de 29 milhões de toneladas de cana, estavam em recuperação judicial ao fim de 2013. Deste total, dez usinas já não constavam do cadastro da ANP de abril de 2014.

Estima-se que as 70 unidades fechadas ou em recuperação judicial correspondam a uma capacidade total de moagem efetiva da ordem de quase 69 milhões de toneladas de

cana. Os fatores que levaram estas unidades a uma situação financeira indesejada são os mais diversos e variam de ineficiência dos processos (agrícola e/ou industrial) a elevado grau de endividamento.

Mais do que a capacidade de moagem que as unidades fechadas representam, importa observar que a busca pela competitividade neste setor impôs custos elevados para unidades que aproveitaram o boom do setor entre 2005 e 2010 para permanecerem em operação. Para estas, a impossibilidade do repasse integral do aumento dos custos de produção gerou uma situação insustentável que culminou com o fechamento ou da entrada em processo de recuperação judicial.

Não há elementos que indiquem que a falta de investimentos no setor possa comprometer o abastecimento e a garantia de cumprimento da obrigatoriedade de mistura de etanol anidro à gasolina no horizonte decenal, mesmo que o percentual seja eventualmente elevado para 27,5%. Dois elementos sustentam esta afirmação: 1) a capacidade atual de produção de etanol é superior à demanda por etanol anidro ainda que a gasolina venha a ser o combustível preponderante para o ciclo Otto no horizonte decenal; e 2) as alterações na forma de comercialização do etanol anidro, que introduziram o regime de contratos, confere previsibilidade ao mercado.

Em 2012, foi regulamentada a Lei nº 12.490/2011 e publicada a Lei nº 12.666, de 14 de junho de 2012. A partir da vigência da primeira, a ANP, com o objetivo de aprimoramento contínuo dos mecanismos de regulação, publicou a Resolução ANP nº 67/2011, pela qual: regulamenta as aquisições de etanol anidro combustível pelos distribuidores de combustíveis líquidos automotivos, mediante obrigatoriedade de contratos pré-estabelecidos; e define regras para os estoques mínimos de etanol para o período de entressafra, a serem cumpridos tanto pelos distribuidores quanto pelos produtores.

Essas regras favorecem a segurança do abastecimento desse biocombustível, particularmente na entressafra, garantindo-se a disponibilidade do produto até o início da safra seguinte. Esta Resolução, cujos efeitos passaram a vigorar a partir da safra 2012/13, tem contribuído na estabilidade da oferta do etanol anidro, tendo em vista o engajamento dos agentes de mercado no ambiente de contração regulado. Já a Lei nº 12.666/2012 autorizou a União a conceder subvenção econômica, sob a forma de equalização das taxas de juros, nas operações de financiamento para a estocagem de etanol combustível, com vistas a reduzir a volatilidade dos preços do etanol e contribuir para a estabilidade da oferta do produto.

Todos os instrumentos apresentados: i) obrigatoriedade de contratos préestabelecidos de etanol anidro; ii) estoques mínimos de etanol anidro para o período de entressafra, a serem cumpridos tanto pelos distribuidores quanto pelos produtores; iii) mecanismo de financiamento para a estocagem; e iv) faixa admissível para fixação pelo Poder Executivo do percentual de mistura de etanol anidro (18% a 27,5%), cujo teor máximo foi recentemente ampliado para 27,5%, com condicionantes, nos termos da Lei nº 13.033, de 24 de setembro de 2014 — estabelecem as condições para garantia do abastecimento sem que sejam necessários os estoques estratégicos de etanol combustível (etanol carburante) conforme Lei nº 8.176/1991 e Decreto nº 238/1991.

Cabe ainda um destaque em relação à utilização de novas tecnologias para a produção de etanol no Brasil. Embora o PDE, no cenário considerado, assuma que a penetração da tecnologia de lignocelulose (segunda geração – 2G) não será representativa até 2024, alguns projetos estão em andamento está e podem acelerar o processo de adoção

xxiii A Raízen possui projetos de construção de unidades de produção de etanol 2G em escala comercial. Sua primeira unidade entrou em operação em julho de 2015. Além desta, outras empresas

desta tecnologia em larga escala com ganhos de produtividade e redução de custos para o setor. Exemplo disso é a entrada em operação da primeira unidade de produção de etanol 2G no Brasil. Em agosto de 2014 foi autorizada pela ANP a operação da unidade da empresa GranBio, em São Miguel dos Campos, Alagoas, que possui capacidade para produção de 82 milhões de litros por ano.

Em outubro de 2014 a ANP a autorizou a operação da segunda unidade de produção de etanol a partir de tecnologias 2G. A unidade da Raízen Energia S.A. possui capacidade de produção de 40 milhões de litros de etanol por ano.

O amadurecimento destas tecnologias de produção de etanol a partir de novas rotas e matérias primas certamente contribuirá para a garantia do abastecimento do mercado interno de etanol combustível.

conduzem pesquisas nesta área tanto em escala de demonstração e/ou laboratorial: CTC (Centro de Tecnologia Canavieira), Odebrecht têm iniciativas em escala de demonstração. CTBE conduz três projetos de diferentes empresas em escala piloto.

5 Estoques de Operação

Este capítulo apresenta a evolução do normativo vigente para os estoques de operação, ações desenvolvidas pelas ANP no âmbito do GFL e uma avaliação do abastecimento ao longo dos anos de 2015 e 2016.

5.1 Os estoques mínimos obrigatórios

Desde a publicação das Resoluções ANP nºs 45/2013 (óleo diesel e gasolina), 05/2015 (GLP) e 06/2015 (QAV), a SAB/ANP concentrou-se na verificação do cumprimento das obrigações previstas no marco regulatório.

A Agência busca garantir a adimplência, a consolidação e a análise das informações declaradas pelos agentes. Nesse sentido, entre janeiro e novembro de 2016, a SAB/ANP havia lavrado 63 (sessenta e três) autuações por não atendimento às resoluções de estoque. As ações de fiscalização visam o cumprimento da obrigação de envio de informações pelos distribuidores inadimplentes, com o objetivo de identificar as ações necessárias para superar restrições operacionais que comprometam a manutenção de níveis adequados de estoque e de exigir a manutenção dos níveis de estoques obrigatórios. Os agentes que sistematicamente não cumprem a obrigação são autuados em auditorias periódicas.

De forma agregada, os distribuidores e produtores de combustíveis líquidos e de QAV vêm mantendo estoques mínimos em nível compatível ao estabelecido na resolução pertinente.

No segmento de GLP, a ANP continua enfrentando questionamento jurídico quanto aos efeitos da Resolução ANP nº 05/2015. Os distribuidores de GLP ingressaram com pedido de liminar, questionando a validade da Resolução e solicitando a suspensão da aplicação de medidas punitivas. Até o momento, o mérito não foi julgado. De qualquer forma, a ANP acompanha o envio e consolida as informações de estoque desses agentes. Os resultados apontam que apenas na Região Nordeste os distribuidores não mantém nível de estoques compatível com o patamar mínimo previsto em Resolução.

Cabe destacar que, entre os meses de junho e agosto de 2016, problemas no suprimento de GLP, agravados pela reduzida infraestrutura para movimentação e armazenagem desse combustível, trouxeram dificuldades ao abastecimento. Em decorrência de paradas de refinarias, na Bahia e no Rio Grande do Sul, os estoques dos distribuidores foram muito pressionados. Para a manutenção do abastecimento, esses agentes recorreram a transferências rodoviárias, envolvendo volumes e rotas não usuais.

5.2 Ações apontadas pelo GFL

O GFL continua promovendo e estimulando medidas de curto e de longo prazo, que elevem os padrões do abastecimento de combustíveis brasileiro.

Em 2016, avaliaram-se cenários futuros, considerando alternativas entre a autossuficiência e a dependência externa. O atendimento ao cenário de crescentes volumes na importação de derivados, que parece mais provável, requererá adequações na infraestrutura portuária, que serão abordadas no capítulo 6, e trará a necessidade de

aumento nos volumes dos estoques operacionais. Adicionalmente, sob a ótica da garantia do abastecimento nacional, é importante manter o debate acerca da formação de estoques estratégicos.

Também teve destaque a publicação da Resolução ANP nº 53, em 2 de dezembro de 2015, que trata do monitoramento do abastecimento nacional. Esse regulamento se aplica aos produtores de derivados de petróleo que possuam, no mínimo, 5% de participação, direta ou indireta, do volume produzido em nível nacional, aos distribuidores de combustíveis líquidos, de GLP e de combustíveis de aviação que possuam, no mínimo, 5% de participação do volume comercializado em pelo menos uma unidade federada e aos operadores de terminais que possuam pelo menos 1 (uma) instalação com capacidade de armazenagem superior a 70 (setenta) mil metros cúbicos em qualquer unidade federativa.

Os 58 agentes que se enquadram nesses critérios devem:

- manter ficha cadastral atualizada, indicando um titular e um suplente, que possam prestar informações à ANP, 24 horas por dia, sete dias por semana;
- comunicar, com o mínimo de 1 (um) mês de antecedência, as paradas de manutenção programadas em unidades de produção de combustíveis líquidos, de GLP e de combustíveis de aviação;
- comunicar, imediatamente, as paradas não programadas ou de emergência em unidades de produção de combustíveis líquidos, de GLP e de combustíveis de aviação; e
- comunicar, imediatamente, qualquer evento, interno ou externo a sua instalação, ou instalação sob sua responsabilidade, com potencial de restringir ou interromper suas operações que impactem no abastecimento, tais como atraso de navio, greves, protestos, eventos climáticos, acidentes operacionais, interrupção de vias de acesso, dentre outros.

Tais medidas visam contribuir para a garantia da continuidade nos fluxos logísticos de suprimento combustíveis.

Para a implementação do grupo de sobreaviso, em 17 de março de 2016, a ANP realizou a Reunião Inicial do Monitoramento do Abastecimento Nacional, onde foram esclarecidas dúvidas e definidos os procedimentos para seu funcionamento. Os componentes do grupo também têm sido acionados em casos de restrições ao abastecimento, o que garante maior agilidade na obtenção e consolidação de informações. Desde maio, a SAB elabora relatórios mensais, com a avaliação das condições do abastecimento de combustíveis. Também foram realizadas três reuniões para determinação dos impactos de paradas programadas de refinarias sobre o abastecimento. Periodicamente, são realizadas simulações, para garantir que o cadastro dos componentes mantenha-se atualizado.

5.3 Avaliação do Abastecimento em 2015

Em 2015, de forma agregada, os distribuidores de combustíveis líquidos cumpriram as obrigações previstas pelas resoluções que tratam do estoque mínimo obrigatório. As tabelas a seguir apresentam dados agregados para gasolina A e diesel S500, nas cinco regiões, para manutenção de estoques definidos pela Resolução ANP nº 45/2013.

Tabela 7 – Estoques de gasolina A nos distribuidores (mil m³)

	Região 1		Região 2		Reg	Região 3		Região 4		Região 5		Total	
	Esm	Meta	Esm	Meta	Esm	Meta	Esm	Meta	Esm	Meta	Esm	Meta	
jan/15	90	24	21	18	94	65	250	142	101	55	556	305	
fev/15	80	22	25	16	107	59	292	140	114	53	617	290	
mar/15	108	24	29	16	130	61	284	146	136	54	686	301	
abr/15	112	25	28	17	123	65	262	154	131	57	656	318	
mai/15	103	25	31	17	117	64	263	153	125	55	638	315	
jun/15	115	24	28	16	108	61	274	140	130	52	655	293	
jul/15	116	26	27	17	106	66	260	145	123	56	632	310	
ago/15	113	27	25	17	115	66	254	150	110	56	617	315	
set/15	106	28	23	18	108	68	244	152	114	56	596	322	
out/15	91	29	23	19	103	72	251	160	118	61	585	340	
nov/15	84	25	25	16	77	65	252	141	116	54	555	301	
dez/15	82	29	22	21	80	77	239	165	118	65	541	356	

Região 1 (estados da Região Norte, exceto TO), região 2 (BA e SE), região 3 (TO, estados da Região Nordeste, exceto BA e SE), região 4 (estados das Regiões Sudeste e Centro-Oeste) e região 5 (estados da Região Sul). Esm = Estoque Semanal Médio. Meta = Estoque Mínimo Requerido.

Fonte: declaração de distribuidores. Elaboração: ANP.

Tabela 8 – Estoques de óleo diesel A de distribuidores (m³)

	Região 1		Região 1 Região 2		Reg	Região 3		Região 4		Região 5		Total	
	Esm	Meta	Esm	Meta	Esm	Meta	Esm	Meta	Esm	Meta	Esm	Meta	
jan/15	281	38	38	27	130	66	373	164	167	65	990	359	
fev/15	289	34	32	25	121	59	379	177	161	71	981	365	
mar/15	295	38	38	25	113	59	368	179	131	76	946	376	
abr/15	275	37	38	29	111	61	347	178	127	74	899	378	
mai/15	282	36	40	28	113	65	349	192	184	72	968	393	
jun/15	262	37	33	24	130	58	352	177	198	63	975	360	
jul/15	257	41	32	26	122	64	480	190	199	71	1.090	392	
ago/15	236	40	32	27	137	69	331	196	176	74	911	406	
set/15	213	42	30	28	123	72	319	191	177	70	862	403	
out/15	251	44	31	29	107	76	326	203	175	79	889	430	
nov/15	202	39	32	24	107	69	342	164	195	67	879	363	
dez/15	216	39	35	24	98	69	328	150	194	59	872	342	

Região 1 (estados da Região Norte, exceto TO), região 2 (BA e SE), região 3 (TO, estados da Região Nordeste, exceto BA e SE), região 4 (estados das Região Sudeste e Centro-Oeste) e região 5 (estados da Região Sul). Esm = Estoque Semanal Médio. Meta = Estoque Mínimo Requerido.

Fonte: declaração de distribuidores. Elaboração: ANP.

Mesmo assim, eventos extraordinários trouxeram riscos ao abastecimento nacional, que foram superados sem maiores prejuízos para os consumidores.

Em abril, houve um incêndio no terminal da Ultracargo, em Santos/SP. Apesar desta instalação não possuir destaque entre as que movimentam combustíveis, o evento provocou a paralisação da operação em algumas áreas do porto, comprometendo outras operações, tais como a de comercialização de óleo combustível para navios e o carregamento de embarcações destinadas a operações de cabotagem de combustíveis.

Em novembro, uma greve de caminhoneiros trouxe dificuldades para o abastecimento de algumas regiões do país. No mesmo mês, um movimento grevista na Petrobras provocou a redução de estoques de derivados desse produtor, ocasionando reflexos nos meses subsequentes.

Tais fatos reforçam a importância da manutenção de estoques operacionais, comprovam a necessidade da identificação dos principais agentes responsáveis pelo abastecimento nacional de combustíveis e, valorizam a organização de uma rede de contatos que reúna informações sobre o abastecimento nacional.

6 Infraestrutura Portuária para Petróleo e Derivados

Os estudos do ciclo 2016-2025, que preveem crescimento das importações de derivados para atendimento ao mercado nacional, provocam a reflexão sobre a atual infraestrutura portuária nacional e sua capacidade para atender às necessidades da demanda projetada. Neste capítulo, propõe-se apresentar a questão de forma introdutória, com base principalmente nos instrumentos de planejamento portuário elaborados pela Secretaria de Portos do Ministério dos Transportes, Portos e Aviação Civil e nos dados de movimentação publicados pela Agência Nacional de Transportes Aquaviários – Antaq.

6.1 Instalações Portuárias e Movimentação

O Brasil possui atualmente 40 instalações portuárias que movimentam graneis líquidos combustíveis, localizadas em 19 portos organizados (públicos). Essas instalações foram responsáveis por 20,5% da movimentação total de petróleo e derivados em 2015, que foi de 203,1 milhões de toneladas (Gráfico 25). O maior volume desses produtos é movimentado por 31 Terminais de Uso Privado – TUPs, que foram responsáveis, em 2015, por 79,5% do total movimentado.

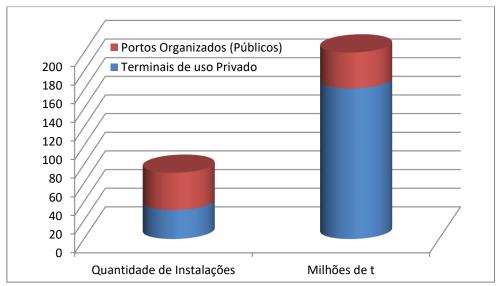


Gráfico 25 – Movimentação portuária de petróleo e derivados em 2015

Em 2015, os portos organizados tiveram crescimento em movimentação de 4,3%, em relação ao ano precedente. Desses, destacam-se, nesta ordem: Suape/PE, Itaqui/MA, Santos/SP, Mucuripe/CE e Aratu/BA, responsáveis por aproximadamente 78% do total movimentado pelos portos públicos em 2015 (Quadro 4). Entretanto, considerando o total nacional, houve redução de movimentação de 2,6% em relação a 2014.

Portos Organizados	2014	2015	Var. 2014/15
Suape	8.454.514	13.344.909	57,8%
Itaqui	7.883.810	7.510.940	-4,7%
Santos	6.871.325	7.215.222	5,0%
Fortaleza	2.666.754	2.289.330	-14,2%
Aratu	2.478.472	2.207.342	-10,9%
Belém	2.182.011	2.085.320	-4,4%
Rio Grande	2.897.169	1.898.221	-34,5%
Paranaguá	2.063.007	1.576.828	-23,6%
Vila do Conde	803.677	877.217	9,2%
Maceió	789.103	693.650	-12,1%
Vitória	650.017	608.448	-6,4%
Cabedelo	689.303	555.143	-19,5%
Santana	823.212	489.596	-40,5%
Santarém	180.733	159.493	-11,8%
Rio de Janeiro	51.578	57.735	11,9%
Salvador	21.179	19.317	-8,8%
Recife	9.325	4.218	-54,8%
Natal	0	0	0,0%
Porto Velho	349.146	0	-100,0%
TOTAL PORTOS ORGANIZADOS	39.866.349	41.594.944	4,3%
TOTAL TUPs	168.705.714	161.481.258	-4,3%
TOTAL GERAL	208.572.063	203.076.202	- 2, 6%

Quadro 4 - Participação dos portos e terminais na movimentação de petróleo e derivados (em milhões t)

Uma das questões que merece destaque é a situação contratual precária de parte dos terminais arrendatários localizados nos portos organizados. Das 40 instalações em operação, 11 se encontram ao amparo de contrato de transição, cuja vigência é de 180 dias. Sob a regra atual e, desde que se comprove risco à continuidade da prestação de serviço portuário de interesse público, admite-se a celebração de sucessivos contratos de transição. Essa situação demanda celeridade na execução de novas licitações dessas instalações, bem com prover a segurança jurídica necessária a novos investimentos de longo prazo, voltados à movimentação de graneis líquidos combustíveis.

6.2 Projeções de demanda e Capacidade Atual segundo o Plano Nacional de Logística Portuária – PNLP

Desde 2012, a então Secretaria Especial de Portos da Presidência da República, atual Secretaria de Portos do Ministério dos Transportes, Portos e Aviação Civil, tem elaborado o Plano Nacional de Logística Portuária – PNLP, cuja última versão foi publicada em 2015^{xxiv}.

O PNLP vigente adota como 2014 como ano de referência e possui horizonte até 2042. Além dos pilares estratégicos e respectivos objetivos, o Plano apresenta as projeções de demanda por natureza de carga e por *cluster* portuário, confrontando com as capacidades instaladas, a alocação de cargas na malha logística e os desafios do setor portuário nacional, com destaque para o portfólio de investimentos necessários.

xxiv Disponível em: http://www.portosdobrasil.gov.br/assuntos-1/pnpl/plano-nacional-de-logistica-portuaria

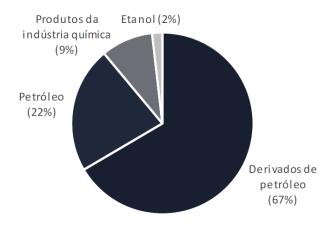

A Tabela 9 apresenta os *clusters* definidos no PNLP, com os portos e instalações portuárias que os compõem.

Tabela 9 – Definição dos Clusters Portuários

Nome do <i>Cluster</i> Portuário	Instalações Portuárias Contempladas
Cluster de Amazonas-Santarém	Santarém, Manaus, Porto Velho e TUPs
Cluster do Maranhão-Vila do Conde	Belém, Santana, Itaqui, Vila do Conde e TUPs
Cluster do Ceará	Pecém, Fortaleza e TUPs
Cluster do Rio Grande do Norte	Areia Branca, Natal e TUPs
Cluster de Pernambuco	Recife, Maceió, Cabedelo, Suape e TUPs
Cluster da Bahia	Salvador, Aratu, Ilhéus e TUPs
Cluster do Espírito Santo	Vitória e TUPs
Cluster do Rio de Janeiro	Rio de Janeiro, Itaguaí, Forno, Niterói, Angra dos Reis e TUPs
Cluster de São Paulo	Santos, São Sebastião e TUPs
Cluster de Paraná-São Francisco do Sul	Paranaguá, Antonina, São Francisco do Sul e TUPs
Cluster de Itajaí-Imbituba	Itajaí, Imbituba e TUPs
Cluster do Rio Grande do Sul	Rio Grande, Porto Alegre, Pelotas, Estrela e TUPs

Fonte: Ministério dos Transportes, Portos e Aviação Civil.

Em termos de representatividade, os produtos de granéis líquidos combustíveis tiveram em 2014³⁷ a distribuição mostrada no Gráfico 26, com destaque para Petróleo e Derivados que somaram 89% do total dessa natureza de carga movimentada nos portos e terminais.

Fonte: SECEX/MIC. Elaboração: PNLP 2015.

Gráfico 26 – Representatividade dos produtos de granel líquido combustível em 2014.

Em termos do tipo de navegação, o PNLP indica que 53% da movimentação de graneis líquidos combustíveis em 2014 ocorreu por cabotagem, enquanto a navegação de longo curso, com destaque para importação, representou 47%. De acordo com as projeções de demanda, esse comportamento se manterá no horizonte de 2042 (Gráfico 27).

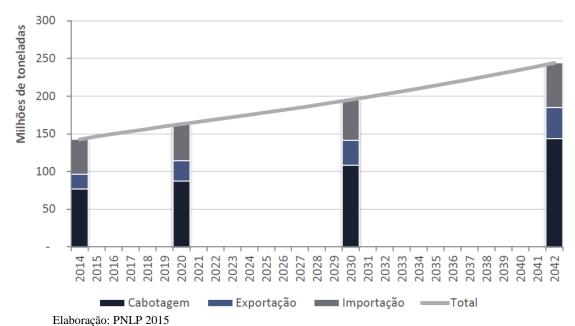
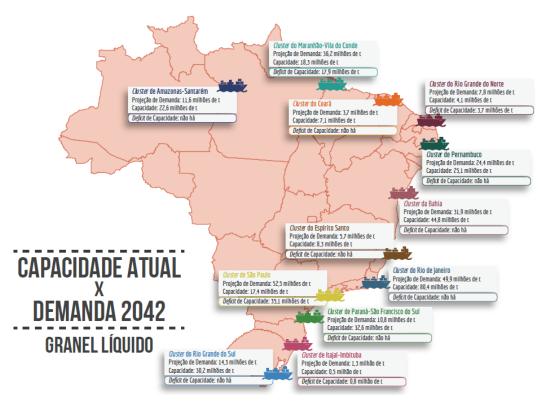


Gráfico 27 – Movimentação de granel líquido combustível: observado (2014) e projetado (2042).

A projeção de demanda do granel líquido combustível para os portos brasileiros no período 2014-2042 prevê um crescimento de 72%, atingindo um patamar de aproximadamente 243,7 milhões de toneladas em 2042. O Quadro 5 indica as variações percentuais de demanda, por *cluster* portuário.

Clusters Portuários	2014	2020	2030	2042	Var. 2042/14
Maranhão-Vila do Conde	14,7	19	25,6	36,2	146%
Amazonas-Santarém	6,5	6,8	8,5	11,2	72%
Ceará	4,5	4,1	3,4	3,7	-18%
Rio Grande do Norte	4,5	5	6,1	7,8	73%
Pernambuco	17,7	19,6	21,2	24,4	38%
Bahia	24,9	25,1	27,6	31,9	28%
Espírito Santo	2,9	3,6	4,5	5,7	97%
São Paulo	25,9	31,5	38,3	48,3	86%
Rio de Janeiro	29,2	33,9	41,2	49,9	71%
Paraná-São Francisco do Sul	4,9	6,4	7,8	9,5	94%
Rio Grande do Sul	5,7	7,3	10,1	13,8	142%
Itajaí-Imbituba	0,3	0,6	0,9	1,3	333%
Totais	141,7	162,9	195,2	243,7	72%

Elaboração: PNLP 2015


Quadro 5 - Variações percentuais de demanda, por cluster portuário (em milhões t).

Quanto à distribuição da demanda por tipo de navegação, o PNLP estima que a cabotagem terá incremento de 84% no mesmo período, enquanto a navegação de longo curso crescerá apenas 49%, considerando tanto importação, quanto exportação. Na cabotagem, os derivados de petróleo representam a maior participação entre todos os produtos estudados nesse tipo de navegação. Essa movimentação está diretamente relacionada às operações de transferência de combustível entre bases, de modo a garantir o abastecimento nacional de gasolina, querosene, óleo diesel e outros derivados.

Essa previsão poderá ser completamente alterada caso haja incremento mais acentuado das importações de derivados, motivado por decisões ou dados não disponíveis à época da elaboração do PNLP.

Considerando a relação entre a projeção de demanda no horizonte 2042 e a capacidade de movimentação portuária instalada, o PNLP faz a análise de todos os tipos de granéis líquidos combustíveis e agrícolas, estes últimos compostos basicamente por óleo de soja e suco de laranja, cuja demanda deve atingir um patamar de 6,4 milhões de toneladas em 2042.

Essa demanda é significativamente inferior aos graneis líquidos combustíveis, que, em no mesmo horizonte, estima-se que irão atingir 243,7 milhões de toneladas. A Figura 19 apresenta a projeção de demanda para todos os tipos de granel líquido em 2042.

Fonte: Ministério dos Transportes, Portos e Aviação Civil.

Figura 19 – Capacidade atual e demanda projetada para 2042 por cluster portuário: granel líquido

Observa-se que os maiores déficits de capacidade estimados estão nos *clusters* de Maranhão-Vila do Conde (17,9 milhões t) e São Paulo (35,1 milhões t), o que é indicativo para direcionar novos investimentos.

Em face do exposto, conclui-se que é oportuno e estratégico adotar a abordagem de planejamento integrado, no sentido de promover um maior debate com fins de melhor coordenação entre as políticas de infraestrutura portuária e de produção e distribuição de petróleo e derivados, para que as demandas desse setor constituam critérios objetivos nos editais das futuras licitações no âmbito do Programa de Parcerias de Investimentos – PPI no setor portuário, bem como de novas autorizações de TUPs voltados à movimentação de graneis líquidos combustíveis. O recente anúncio pelo Conselho da PPI, em setembro último, para licitações no setor portuário, previu apenas um arrendamento para derivados no Porto de Santarém/PA, o que é insuficiente a médio e longo prazos, conforme projetado tanto pelo PDE, quanto pelo PNLP vigentes. Considerando-se os prazos necessários tanto ao processo licitatório, quanto à efetiva contratação e início da operação

de um terminal portuário, é fundamental promover de imediato maior debate e fomentar o alinhamento das atividades de planejamento intersetorial.

É importante destacar que, em decorrência de seus estudos e suas manifestações públicas, a ANP tem alertado para as exigências associadas ao crescimento de nossa dependência externa de derivados. Em tais circunstâncias, toda a infraestrutura de movimentação e armazenagem dos combustíveis importados, compreendendo portos, dutos e tanques, seria pressionada.

Visando a garantia do abastecimento, sugere-se a criação de novas áreas de movimentação e armazenagem de combustíveis, nos portos de Pecém/CE, Vila do Conde/PA e São Francisco do Sul/SC. Além disso, propõe a construção de um novo duto ligando o terminal de São Sebastião/SP ao de Guararema/SP e a adequação de linhas de descarga nos portos de Itaqui/MA, Santos/SP e Suape/PE.

No Pará, há expectativa de que o Porto de Vila do Conde substitua o Porto de Miramar, onde, atualmente, é realizada grande parte da movimentação dos combustíveis destinados ao estado. Miramar apresenta restrições ao acesso de navios de maior calado, o que obriga uma maior frequência de chegada dos navios e aumenta os custos do abastecimento da região. Além disso, devido a incertezas quanto ao prazo e ao modelo da futura licitação portuária, há dificuldades para a realização de novos investimentos e, até mesmo, de obras de manutenção.

Por sua vez, o Porto de Itaqui, em São Luis/MA, é considerado estratégico, pois possui capacidade para receber navios de elevado calado e, por meio da Estrada de Ferro Carajás, que alcança a Ferrovia Norte-Sul, pode atender a Região Centro-Oeste do Brasil. É o principal porto para as importações nacionais de óleo diesel e gasolina, sendo responsável por 66,8% do volume importado de óleo diesel e 50,9% da gasolina. Em Itaqui, a Petrobras realiza entregas para os terminais e bases de combustíveis, que ali se localizam, e operações de transbordo para outros navios, que atuam na cabotagem para outros portos do país. Por suas características, o porto é muito procurado para a movimentação de outros produtos. Nesse sentido, o processo licitatório deve preservar áreas para a movimentação de combustíveis e promover a otimização da utilização das facilidades já existentes.

No Ceará, há expectativa de que o Porto de Pecém substitua o Porto de Mucuripe, que se encontra na área urbana do Município de Fortaleza. Como havia a previsão de instalação de uma nova refinaria da Petrobras localizada próxima ao Porto de Pecém, o governo do estado promoveu a desapropriação da área do Porto de Mucuripe, onde estão localizadas as bases dos distribuidores de combustíveis líquidos. A desapropriação impossibilita a realização de investimentos no porto atualmente utilizado, cujas instalações já são insuficientes para o atendimento à demanda de combustíveis do Ceará. O anúncio, pela Petrobras, do cancelamento do investimento na nova refinaria trouxe incertezas e atrasos para o processo de transferência das operações de combustíveis de Mucuripe para Pecém. A ANP tem mantido contato com as autoridades estaduais e alertado para a urgência da solução do problema, sem a qual aquele Estado permanecerá sob risco permanente de problemas no abastecimento. Assim como em Miramar, o abastecimento do Estado do Ceará requer entregas muito frequentes, o que reduz o tamanho do lote e aumenta o tempo de espera dos navios, elevando os custos operacionais.

No Porto de Suape, no Estado de Pernambuco, localizam-se a Refinaria Abreu e Lima (RNEST), diversas bases de distribuidores e terminais de movimentação e armazenagem de combustíveis. Esse é o segundo porto brasileiro mais importante para a importação de óleo diesel e gasolina. No local, também permanece atracado um navio

cisterna, utilizado para armazenagem de GLP, que mantém o estoque de segurança para as operações da Região Nordeste e é utilizado para aliviar a carga de navios com produto importado, que dali segue para outros portos. Em Suape, o navio cisterna também realiza operações de transbordo de GLP, para navios que suprem, por cabotagem, outras regiões do país. Neste porto, deve ser mantido um programa de investimentos nas instalações relacionadas à movimentação de combustíveis, preservada sua atual destinação e solucionadas eventuais problemas de concessão de uso da área.

O Terminal Portuário de São Sebastião, localizado no Estado de São Paulo, é responsável pelo suprimento de petróleo para as refinarias da região e é o terceiro em importância na importação de óleo diesel. Dessa forma, para manter a adequada internalização, detecta-se a necessidade de investimentos nos dutos que promovem sua conexão com as refinarias do Estado de São Paulo.

Em razão dos gargalos verificados no Porto de Paranaguá, onde, atualmente, são realizadas as movimentações de derivados de petróleo necessárias à operação da Refinaria Presidente Getúlio Vargas (REPAR), em Araucária/PR, verifica-se a necessidade de ampliação das operações de derivados no Porto de São Francisco do Sul, em Santa Catarina. Além de contribuir para o aumento da movimentação de combustíveis a partir da REPAR, esse porto poderia participar da operação do abastecimento do Estado de Santa Catarina, essencialmente suprido pelo Oleoduto Paraná-Santa Catarina (OPASC), oriundo de Araucária, que opera próximo ao limite de sua capacidade.

7 Conclusões e providências

O Grupo de Trabalho do Sistema Nacional de Estoques de Combustíveis apresenta ao Conselho Nacional de Política Energética as seguintes conclusões dos estudos elaborados ao longo do ano de 2016:

- a) As projeções apontam que, no horizonte decenal, o Brasil deve consolidar a posição de exportador líquido de petróleo e a capacidade de produção de etanol anidro supera a demanda projetada. Logo, não é necessária a formação de reservas estratégicas de petróleo e etanol carburante no Brasil;
- b) Os estoques de operação de combustíveis, implementados por produtores e distribuidores conforme resoluções ANP, em conjunto com a sistemática de monitoramento do abastecimento nacional, contribuíram para não ocorrência de descontinuidade do abastecimento no País em 2016:
- c) A Análise Qualitativa de Risco (AQR) aponta baixa relevância para o risco de descontinuidade e/ou restrição no suprimento de petróleo (produzido ou importado), apesar de estar em curso processo de reconfiguração da indústria nacional de petróleo;
- d) A Análise Semiquantitativa, baseada em cálculos estatísticos para pequenas amostras resultou, para um nível de confiança de 95%:
 - 1. em caso de ocorrência de eventos críticos externos, estes estarem situados num intervalo entre 2,65% e 4,83% da produção mundial;
 - 2. em caso de ocorrência de eventos críticos internos, estes representarem perdas efetivas de produção^{xxv} entre 0,37% a 1,22%; e
- e) Ademais, eventuais riscos de abastecimento de combustíveis decorrente da maior empresa de petróleo do país estão sendo tratados no âmbito da Iniciativa Combustível #Brasil.

Por fim, o Grupo de Trabalho entende como necessárias as seguintes providências:

- a) Avaliar conveniência e oportunidade para iniciar processo legislativo para alteração dos atos normativos vigentes na Iniciativa Combustível #Brasil;
- Avaliar as regras de livre acesso à infraestrutura portuária para movimentação de produtos, bem como fazer gestão, junto ao Ministério dos Transportes, Portos e Aviação Civil, para que o planejamento intersetorial contemple as demandas do setor de combustíveis e haja agilidade nos processos de licitação nos portos públicos;
- c) Envidar esforços visando o desenvolvimento da Matriz Insumo-Produto, ferramenta necessária para análise quantitativa de riscos; e
- d) Apoiar a implantação da Sistemática de emissão de relatório periódico dos eventos que resultarem em restrição e/ou interrupção de produção nacional de petróleo e de abastecimento de combustíveis.

xxv Produção da Petrobras

GLOSSÁRIO

- AIE Agência Internacional de Energia.
- ANP Agência Nacional do Petróleo, Gás Natural e Biocombustíveis.
- Antaq Agência Nacional de Transportes Aquaviários
- AQR Metodologia adotada para análise qualitativa de riscos que permite a identificação, classificação, avaliação de relevância e proposição para o tratamento dos riscos, admitindo que sejam positivos (oportunidades) e negativos (ameaças).
 - BDEP Banco de Dados de Exploração e Produção.
 - BRICS Brasil, Rússia, Índia, China e África do Sul.
 - CEF Fundo Central de Energia (África do Sul).

Ciclo Otto – ciclo de funcionamento de motores de combustão interna que operam em quatro fases: admissão (de ar e gasolina misturados), compressão, combustão (com emissão de centelha) e descarga.

Ciclo Diesel – ciclo de funcionamento de motores de combustão interna que operam em quatro fases: admissão (somente ar), compressão (a altas taxas provocando aquecimento do ar a temperaturas de 500 °C a 800 °C), combustão espontânea (do óleo injetado após se vaporizar) e descarga.

- Conab Companhia Nacional de Abastecimento.
- CNP Conselho Nacional de Petróleo.
- CNPE Conselho Nacional de Política Energética.
- Comperj Complexo Petroquímico do Rio de Janeiro.
- CT-04 Comitê Técnico 4 Sistema Nacional de Estoques de Combustíveis.
- DNPM Departamento Nacional da Produção Mineral.
- E&P Exploração e Produção.
- EAR Estrutura Analítica de Riscos. Ferramenta utilizada para identificação dos riscos.
 - EPE Empresa de Pesquisa Energética.
 - EPSL Extra Pré-Sal Legal (região externa ao PSL).

Estoques de Operação – destinados a garantir a normalidade do abastecimento interno de combustíveis derivados de petróleo, bem assim de álcool etílico, anidro e hidratado, e outros combustíveis líquidos carburantes, em face de ocorrências que ocasionarem interrupção nos fluxos de suprimento e escoamento dos referidos combustíveis.

FSU – Former Soviet Union. Designação dos países da ex-União Soviética.

GFL – Grupo de Fluxos Logísticos de Produção, Transporte e Armazenagem de Combustíveis.

GFL_{GLP} – Grupo de Fluxos Logísticos de Produção, Transporte e Armazenagem de GLP.

GFL_{JET} – Grupo de Fluxos Logísticos de Produção, Transporte e Armazenagem de Combustíveis de Aviação.

GLP – gás liquefeito de petróleo.

GNL – gás natural liquefeito.

GNV – gás natural veicular.

GT – grupo de trabalho.

Incidente de Abastecimento – Ocorrência de interrupção localizada, com duração inferior a 30 dias, nos fluxos de suprimento de petróleo (produzido ou importado) a mais de uma refinaria brasileira e/ou de etanol carburante ou combustíveis básicos (gasolina e óleo diesel) para abastecimento do mercado nacional.

ISPRL – Companhia Indiana de Reservas Estratégicas de Petróleo (Índia).

IAA – Instituto do Açúcar e do Álcool (extinto em 8 de maio de 1990 por intermédio do Decreto nº 99.240).

LDO – Lei de Diretrizes Orçamentárias.

LGN – líquido de gás natural.

LOA – Lei Orçamentária Anual.

MIC – Ministério da Indústria, Comércio Exterior e Serviços

MME – Ministério de Minas e Energia.

NDRC – Comissão de Reforma e Desenvolvimento Nacional (China).

NEA – Administração Nacional de Energia (China).

NOCs – Companhias de Petróleo Nacionais.

NORC – Centro de Reserva de Petróleo Nacional (China).

OCDE – Organização para a Cooperação e Desenvolvimento Econômico.

OECE – Organização Europeia para a Cooperação Econômica (1ª denominação da OCDE, em 1948).

Offshore – localizado ou operado no mar.

OPASC - Oleoduto Paraná-Santa Catarina

OPEP – Organização dos Países Exportadores de Petróleo.

PIB - Produto Interno Bruto.

Petrobras – Petróleo Brasileiro S.A.

PNG – Plano de Negócios e Gestão.

PNLP – Plano Nacional de Logística Portuária.

POS – Pós-Sal.

PPA – Plano Plurianual.

PSG – Pré-Sal Geológico.

PSL – Pré-Sal Legal.

PROCAP – Programa de Capacitação Tecnológica em Águas Profundas.

QAV – querosene de aviação.

RD – recursos descobertos.

RT – reservas totais.

RC – recursos contingentes.

RNEST – Refinaria Abreu e Lima, conhecida também por Refinaria do Nordeste, em Ipojuca (PE).

R/P – razão entre reserva provada e produção de petróleo.

RND-E – recursos não descobertos.

Relevância – Efeito combinado da probabilidade de ocorrência com o impacto, podendo ser considerada baixa, média ou alta.

REP – reservas estratégicas de petróleo.

REPAR – Refinaria Presidente Getúlio Vargas

Reserva Estratégica – destinada a assegurar o suprimento de petróleo bruto e de álcool para fins carburantes quando do surgimento de contingências que afetem de forma grave a oferta interna ou externa desses produtos.

SECEX - Secretaria do Comércio Exterior

SFF – Fundo Estratégico de Combustíveis (África do Sul).

SGMB – Serviço Geológico e Mineralógico do Brasil.

SINEC – Sistema Nacional de Estoques de Combustíveis.

SPG – Secretaria de Petróleo, Gás Natural e Biocombustíveis.

Transpetro – Petrobras Transportes S.A.

TRR – Transportador-Revendedor-Retalhista. Pessoa jurídica autorizada para o exercício da atividade de transporte e revenda retalhista de combustíveis, exceto gasolinas automotivas, GLP, combustíveis de aviação e álcool combustível.

TUP – Terminal de Uso Privado.

UE – União Europeia.

 $\mbox{UP}-\mbox{unidades}$ produtivas que correspondem às jazidas em produção, desenvolvimento ou avaliação.

UPU – unidades produtivas da União.

¹ Conselho Nacional de Política Energética, Comitê Técnico 06. Importação de Energéticos e Sistema Nacional de Estoques de Combustíveis: estudo preliminar sobre estoques estratégicos de combustíveis, fevereiro de 2001.

² MINISTÉRIO DE MINAS E ENERGIA. Secretaria de Petróleo, Gás Natural e Combustíveis Renováveis. Reservas Estratégicas e Estoques de Operação do Sistema Nacional de Estoques de Combustíveis. Dezembro de 2013.

- ³ Balanço Energético Nacional 2016: Ano base 2015, disponível em https://ben.epe.gov.br.
- ⁴ Yergin, Daniel. *The quest: energy, security, and the remaking of the modern world.* New York: The Penguin Press, 2011.
- ⁵ Key World Energy Statistics 2016, disponível em https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf.
 - ⁶ Oil Market Report, IEA.
 - ⁷ Oil Market Report, IEA.
 - ⁸ Energy supply security: emergency response of IEA countries 2014.
 - ⁹ BP statistical review 2016.
 - 10 http://www.isprlindia.com
 - 11 http://www.iea.org/publications/freepublications/publication/name,28189,en.html
- $^{12}\,\underline{http://www.energy.gov.za/files/policies/Draft-Strategic-Stocks-Petroleum-Policy-And-Stocks-Implementation-Plan.pdf}$
 - 13 http://fred.csir.co.za/www/sff/oil.htm
 - ¹⁴ Nota Técnica ANP nº 010/1999.
- ¹⁵ Morais, José Mauro de. Petróleo em águas profundas: uma história tecnológica da Petrobras na exploração e produção offshore. Brasília: IPEA/Petrobras, 2013.

Leite, Antonio Dias. A energia do Brasil. 2ª ed. São Paulo: Editora Elsevier, 2007.

- ¹⁶ Tolmasquim, Maurício Tiomno; Pinto Júnior, Helder Queiroz (Org.). Marcos regulatórios da indústria mundial do petróleo. Rio de Janeiro: Synergia/EPE, 2011.
- ¹⁷ Morais, José Mauro de. Petróleo em águas profundas: uma história tecnológica da Petrobras na exploração e produção offshore. Brasília: IPEA/Petrobras, 2013.
- ¹⁸ Tolmasquim, Maurício Tiomno; Pinto Júnior, Helder Queiroz (Org.). Marcos regulatórios da indústria mundial do petróleo. Rio de Janeiro: Synergia/EPE, 2011.
- ¹⁹ Tolmasquim, Maurício Tiomno; Pinto Júnior, Helder Queiroz (Org.). Marcos regulatórios da indústria mundial do petróleo. Rio de Janeiro: Synergia/EPE, 2011.
- ²⁰ Tolmasquim, Maurício Tiomno; Pinto Júnior, Helder Queiroz (Org.). Marcos regulatórios da indústria mundial do petróleo. Rio de Janeiro: Synergia/EPE, 2011.
- ²¹ Anuário Estatístico Brasileiro do Petróleo, Gás e Bicombustíveis 2016. Disponível em: http://anp.gov.br/?id=661>.
- ²² Anuário Estatístico Brasileiro do Petróleo, Gás e Bicombustíveis 2016. Disponível em: http://anp.gov.br/?id=661>.
- ²³ Dados estatísticos mensais da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Disponível em: http://www.anp.gov.br/wwwanp/dados-estatisticos>.

- ²⁴ Partes do texto dos estudos do ciclo 2016-2025 da área de E&P da Superintendência de Petróleo (SPT), da Diretoria de Estudos do Petróleo, Gás e Biocombustíveis (DPG) da Empresa de Pesquisa Energética (EPE) Produção de petróleo e gás natural na íntegra, com adaptações do GT SINEC. Coordenação: Ricardo Nascimento e Silva do Valle. Equipe técnica: Adriana Queiroz Ramos, Deise dos Santos Trindade Ribeiro, Jairo Marcondes de Souza, Kátia Souza d'Almeida, Marcos Frederico F. de Souza, Nathalia Oliveira de Castro, Pamela Cardoso Vilela, Pedro Mariano Yunes Garcia, Péricles de Abreu Brumati, Raul Fagundes Leggieri, Regina Freitas Fernandes, Reneu Rodrigues da Silva, Roberta de Albuquerque Cardoso, Victor Hugo Trocate da Silva.
- ²⁵ Banco de Dados de Exploração e Produção (BDEP) da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Disponível em: http://www.bdep.gov.br/?lng=br>.
- ²⁶ Empresa de Pesquisa Energética (EPE). Zoneamento Nacional dos Recursos de Óleo e Gás. Rio de Janeiro: EPE, 2012.
- ²⁷ Empresa de Pesquisa Energética (EPE). Zoneamento Nacional dos Recursos de Óleo e Gás. Rio de Janeiro: EPE, 2012.
- ²⁸ Empresa de Pesquisa Energética (EPE). Zoneamento Nacional dos Recursos de Óleo e Gás. Rio de Janeiro: EPE, 2012.
- ²⁹ Empresa de Pesquisa Energética (EPE). Zoneamento Nacional dos Recursos de Óleo e Gás. Rio de Janeiro: EPE, 2012.
- ³⁰ Empresa de Pesquisa Energética (EPE). Zoneamento Nacional dos Recursos de Óleo e Gás. Rio de Janeiro: EPE, 2012.
- ³¹ Partes do texto dos estudos do ciclo 2016-2025 da área de E&P da Superintendência de Petróleo (SPT), da Diretoria de Estudos do Petróleo, Gás e Biocombustíveis (DPG) da Empresa de Pesquisa Energética (EPE) Produção de petróleo e gás natural na íntegra, com adaptações do GT SINEC. Coordenação: Ricardo Nascimento e Silva do Valle. Equipe técnica: Adriana Queiroz Ramos, Deise dos Santos Trindade Ribeiro, Jairo Marcondes de Souza, Kátia Souza d'Almeida, Marcos Frederico F. de Souza, Nathalia Oliveira de Castro, Pamela Cardoso Vilela, Pedro Mariano Yunes Garcia, Péricles de Abreu Brumati, Raul Fagundes Leggieri, Regina Freitas Fernandes, Reneu Rodrigues da Silva, Roberta de Albuquerque Cardoso, Victor Hugo Trocate da Silva.
- ³² Partes do texto dos estudos do ciclo 2016-2025 da área de E&P da Superintendência de Petróleo (SPT), da Diretoria de Estudos do Petróleo, Gás e Biocombustíveis (DPG) da Empresa de Pesquisa Energética (EPE) Produção de petróleo e gás natural na íntegra, com adaptações do GT SINEC. Coordenação: Ricardo Nascimento e Silva do Valle. Equipe técnica: Adriana Queiroz Ramos, Deise dos Santos Trindade Ribeiro, Jairo Marcondes de Souza, Kátia Souza d'Almeida, Marcos Frederico F. de Souza, Nathalia Oliveira de Castro, Pamela Cardoso Vilela, Pedro Mariano Yunes Garcia, Péricles de Abreu Brumati, Raul Fagundes Leggieri, Regina Freitas Fernandes, Reneu Rodrigues da Silva, Roberta de Albuquerque Cardoso, Victor Hugo Trocate da Silva.
- ³³ Organization of the Petroleum Exporting Countries (OPEC). World crude oil exports by country, 2015. Disponível em: http://asb.opec.org/index.php/data-download.
 - ³⁴ Balanço Energético Nacional BEN 2014, disponível em https://ben.epe.gov.br>.
- ³⁵ REN21 *Renewables 2013 Global Status Report*, obtido em <<u>http://www.ren21.net/REN21Activities/GlobalStatusReport.aspx</u>>.
- ³⁶ Petróleo Brasileiro S.A. (Petrobras). Abastecimento. Padrões SINPEP PE-4AT-00414 e SINPEP PG-2AT-00336, 2013. PROJECT MANAGEMENT INSTITUTE PMI PMBOK Guide, 4th Edition.

³⁷ Ano de referência do PNLP 2015.