IEA Bioenergy ExCo64, Liege, Belgium, 1/10/2009 Algae – The Future for Bioenergy?

Algae Biofuels: Challenges in Scale-up, Productivity and Harvesting (and Economics too!)

John R. Benemann Benemann Associates Walnut Creek jbenemann@aol.com

The Energy Journal, Vol. 1, No.1, 1980

Biomass Energy Economics

John R. Benemann*

... an economy based only on solar energy would have to rely on the natural costless way of harnessing that energy, which means an intensive utilization of wood ... and possibly, but at this moment, debatably, of algae.

N. Georgescu-Roegen, 1976

mainly in open shallow ponds, mostly in raceway-type, paddle wheel mixed ponds, for high value nutritional supplements, ~10,000 t/yr produced, with typical plant gate cost >\$10,000/t. The biofuels challenge: producing millions of tons at <\$1,000/t

Microalgae are very small, grow as very dilute (<1 g/l) cultures in suspension, have very low standing biomass (<100 g/m2), require daily harvesting from large volumes of liquid, with the harvested biomass at <10% solids, must immediately process.

Microalgae cultures requires a source of CO2, either purchased or "free" (power plant flue gases, biogas or ethanol plants, etc.) Not often there were we want. <u>CO2 use is a need not a virtue!</u>

Microalgae require good climate – for a long cultivation season. For biofuels these must be produced at <u>very</u> high productivity And expand the number of species cultivated from four to more.

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: closed photobioreactors vs. open ponds
- 4. Harvesting: wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Economics: projections for microalgae biofuels
- 7. Conclusions: just a few more R&D challenges

(plastic tubes ~5% of total) A rather detailed study!

History repeating itself: GreenFuel Technologies

Roof of MIT at Campus power plant. Claimed that their PBRs captured 85% NOx & 50% CO2, and produced <u>biodiesel</u> at <u>>250,000 I/ha-yr (!!!)</u>. The tested at Arizona Public Services power plant (<u>photoshop!</u>), <u>tests failed.... Now are history (went</u> <u>broke May 2009</u>, after \$70 million).

National Renewable Energy Laboratory

NREL/TP-580-24190

A Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae

Close-Out Report

Paul Roessler (now at Synthetic Genomics)

Aquatic Species Program Report 1998

Executive Summary J. Sheehan (NREL) et al.

Part 1. Algal Cultures and Genetics (P. Roessler and T. Dunahay, consultants)

Part 2. Algal Mass Cultures and Production Technology (J. Benemann, Principal Investigator, and J. Weissman, consultant).

Report only summarizes extensive work by the ASP

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: closed photobioreactors vs. open ponds
- 4. Harvesting: wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Economics: projections for microalgae biofuels
- 7. Conclusions: just a few more R&D challenges

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: closed photobioreactors vs. open ponds
- 4. Harvesting: wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Economics: projections for microalgae biofuels
- 7. Conclusions: just a few more R&D challenges

Biotechnology and Bioengineering, Vol. 31, Pp. 336-344 (1988)

Photobioreactor Design: Mixing, Carbon Utilization, and Oxygen Accumulation

Joseph C. Weissman* and Raymond P. Goebel Microbial Products, Inc. 408A Union Ave., Fairfield, California 94533

John R. Benemann

Department of Applied Biology, Georgia Institute of Technology, Atlanta

Photobioreactor design and operation are discussed in terms of mixing, carbon utilization, and the accumulation of photosynthetically produced oxygen. The open raceway pond is the primary type of reactor considered; however small diameter (1–5 cm) horizontal glass tubular reactors are compared to ponds in several respects.

Paper in response to many claims that PBRs superior to open ponds. Points out problems of both open ponds and closed PBRs. Main issue for PBRs scalability: unit size <1000 m². Also PBRs are <u>too expensive for biofuels</u> but good for inoculum (~1% of biomass) production.

Open Ponds v	/s. Closed	Photobioreactors
Parameter	Relative Impact	Note
Contamination risk	Ponds > PBRs	Just a matter of time for either
Productivity	Ponds ~ PBRs	NO substantial difference*
Space required	Ponds ~ PBRs	A matter of productivity
Water losses	Ponds ~ PBRs	Evaporative cooling needed
CO2 losses	Ponds ~ PBRs	Depends on pH, alkalinity, etc.
O2 Inhibition	Ponds < PBRs	O2 <u>major</u> problem in PBRs
Process Control	Ponds ~ PBRs	no major differences (weather)
Biomass Concentration	Ponds < PBRs	function of depth, 2 -10 fold
Capital/Operating Costs	Ponds << PBRs	Ponds >>10 x lower cost!

*Productivity can be higher if PBRs are in vertical orientation or in cold conditions where the heat retained allows faster growth of the algae.

CONCLUSION: Are PBRs better than ponds? Sometimes: in cold climate, not in hot. Advantages overstated. Key issue is COST

Algae biofuels proposed for Boston high-rise Futuristic design concept offers ultimate in on-site fuel generation

CO₂ Mass Transfer Coefficients in Ponds

Depth cm	Velocity cm/sec	k∟ cm/sec	Surface Renewal, sec
10	10	3.9 x 10 ⁻⁴	150
10	30	1.4 x 10 ⁻³	12
30	10	2.2 x 10 ⁻⁴	480
30	30	0.8 x 10 ⁻³	37

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: Closed photobioreactors vs. open ponds INTERMISSION: CO2 sources /issues for algae biofuels
- 4. Harvesting: Wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Projected microalgae biofuels production economics
- 7. Conclusions: A few more barriers to algae biofuels

Algae use of large coal-fired power plant (CPP) CO2

Even a small CPP needs thousands of hectares of algae ponds
 Transport of flue gas to the algae ponds is a major cost problem
 Transfer of flue gas CO₂ into the ponds is another cost problem
 Loss of CO₂ during transfer of flue gas into algae pond culture
 Loss of CO₂ from the ponds by outgasing, before the algae grow
 Must design CO₂ supply for highest summer hourly productivity
 Day-night & winter-summer disparities reduce CO₂ use by ~75%
 Only ~40-60% of CO₂ actually fixed by algae ends up in oil / fuel
 With losses, <u>maximum plausible</u> net capture of CPPs CO₂ ~10%
 Capture of CO₂ from CPPs is <u>NOT</u> greenhouse gas abatement
 Biofuels grown on CPPs are NOT sustainable (by definition)
 <u>CPPs MUST reduce CO₂ emissions by 90%, not just by ~10%</u>
 Global potential for algae CO₂ capture from CPPs is <<1%

ALGAE USE OF COAL-FIRED POWER PLANT FLUE GAS CO2 FOR GREENHOUSE GAS ABATEMENT CONCLUSION:

ABANDON ALL HOPE

Alternative Sources of CO2 for Algae Production

- 1. Gas/Oil fired cement or ammonia plants, refineries, etc.? Better
- 2. Small distributed fossil power plants? Better still, need more
- 3. Capture of CO₂ from <u>air</u> to supply the algae ponds? Not likely?
- 4. Seawater as a source of CO₂? OK, but only supplemental
- 5. Biomass power plants, pulp paper mills? Yes, need right place
- 6. Ethanol and other agricultural processing plants? More like it.
- 7. Municipal solid wastes processes (landfills)? Looking better !
- 8. Animal & other agricultural wastes? Looking better all the time!
- 9. Municipal wastewaters (sewage)? BINGO! We have a winner !!!

WHY?: Because municipal wastewater treatment pays, enough; Because sewage has the right C, N, P nutrient concentrations; Because it is a reliable supply, and algae treatment would save more greenhouse gases by producing not using energy; Because algae recover nutrients better than other technologies Because use existing technology, need only modest advances

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: Closed photobioreactors vs. open ponds
- 4. Harvesting: Wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Projected microalgae biofuels production economics
- 7. Conclusions: A few more barriers to algae biofuels

BIOFLOCCULATION OF MICROACTINIUM these spontaneously forming flocs settle rapidly for low-cost harvesting - a key requirement in mass culture of microalgae, for biofuels or waste treatment

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: closed photobioreactors vs. open ponds
- 4. Harvesting: wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Economics: projected for microalgae biofuels
- 7. Conclusions: just a few more R&D challenges

THE ALLURE (OF MICROALGAE	OIL PRODUCTION		
<u>Oil yields</u>	liters/ha-yr	barrels/ha-yr		
Soybeans	400	2.5		
Sunflower	800	5		
Canola	1,600	10		
Jathropha	2,000	12		
Palm Oil	6,000	36		
Microalgae	60,000-240,000	* 365 -1500*		
*Projected high yield (by GreenFuel Technologies) is ~2 x theoretical efficiency (with no biomass!) Low is maximum possible yield for long-term R&D				

SOLAR ENERGY CONVERSION WITH PHOTOSYNTHESIS US Southwest solar energy=2 MWhr (7.2 GJ)/m²-yr ~assume 90% reaches the crop/or algae in pond ~45% is PAR (photosynthetic active radiation) ~ 90% photons are absorbed by PS pigments <u>22% max PS efficiency</u> (photons \rightarrow biomass energy) ~75% loss to light saturation and photoinhibition ~15% loss to respiration (growth, maintenance) <u>Calculation (current best</u>, year-round <u>algae culture</u>): 7.2 GJ x0.9 x0.45 x0.9 x0.22 x0.25 x0.85 = 0.12 GJ ~1.7% solar efficiency. For @25% oil in biomass ~23GJ/mt and productivity is ~52<u>m</u>=13 mt oil/ha-y <u>Maximum oil ~15,000 liters/ha-yr (1,600 gal/ac-yr)</u> <u>near-term technology, 2-3X with long-term R&D on</u> PS efficiency ("antenna size"), oil biosynthesis, etc

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: closed photobioreactors vs. open ponds
- 4. Harvesting: wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Economics: projected for microalgae biofuels
- 7. Conclusions: just a few more R&D challenges

Controlled Bioreactor Landfill Project, Davis CA

1989 – present Don Augenstein and John Benemann Institute for Environmental Management, Inc. and Ramin Yazdani, Dept. Public Works, Yolo County, CA

	ABC D E F	G	н		J	К	L	M	N	0	P	0	В
	Begyele wantowater and				-					-			
1	Recycle Wastewater case	,											
2	Set Price for Land (50% increase for \100ba)		15,000	\$iha									
2	Sat Drive for David of Oil		100	dibarral	Contain oil con	1 20 01 2007							
	Sec Price for Baller of Oil		100	andanei	Soy bear on cos	scas or 2007							
4	Set Price for Carbon Credit		1.85	\$mt	AS OF 10-08-08								
5	Gas Turbine Cost (\$/kW)		\$ 475	łk₩	REF Boyce 200	2							
6	Additional area req. 'based on drawing		39%										
7													
8													
9													
10		_											
11													
12	Querado alese productivity (alm2id)	Jan	reu	10	25	Mag 20	300	30	Aug 20	Sep 25	10	NUV	Dec
14	Evancration of total flow (%)	2.5%	34%	5.5%	7.3%	9.2%	96%	97%	9.1%	74%	5.5%	3.3%	24%
15	Volatilazation N (%)	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
16	Blow down [%]	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
17	Anaerobic digestion loss (%)							10%					
18													
19	Operation Results	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Deo
20	Influent (m3/d)	311,400	311,400	311,400	311,400	311,400	311,400	311,400	311,400	311,400	311,400	311,400	311,400
21	Total year year (ha)	80,607	81,353	82,626	83,541	84,207	85,569	85,569	84,207	83,541	82,626	81,353	80,607
23	# of Ponds	25	25	26	26	26	27	27	26	26	26	25	25
24	Evanoration (m3/d)	2 018	2 773	4 555	6.030	7 713	8179	8253	7.649	6 129	4 475	2.642	1887
25	Blow down Q (m3/d)	77.718	76.610	74.226	72.318	70.319	69,205	69,132	70.383	72.219	74,306	76,742	77.849
26	Blow down N (mg/L)	28	24	19	15	12	5	5	12	15	19	24	26
27													
28	Total Biomass Available (kg/d)	1,620	6,539	14,942	20,983	25,380	34,388	34,388	25,380	20,983	14,942	6,539	1,620
29	Total Biomass per month (kg/month)	48591	196161	448272	629493	761410	1031645	1031645	761410	629493	448272	196161	48591
30	Labor Deminerate												
31	Allester Allester	e 2249	4 2.242		4 2.225	2 220	2 209	2 209	4 2.220	4 2.225	* 2.222	* 2242	A 2249
33	\$/ur	\$ 378 194	\$ 380.243	\$ 383,755	\$ 386,290	\$ 399.141	\$ 391.946	\$ 391946	\$ 388 141	\$ 386,290	\$ 383,755	\$ 380.243	\$ 378 194
34	**	* 010,001	*	*	• ••••	• ••••,	*	*	* ****	*	*	*	* 010,101
35													
36	Carbon Diozide	Jan	Feb	Mar	Apr	Mag	Jun	Jul	Aug	Sep	Oct	Nov	Dec
37	Peak hourig												
38	Peak Algae Productivity (g/m2/hr)	0.5	0.5	0.5	2	4	4	4	4	3	2	0.5	0.5
33	Mat Biomass (kgmr)	036	036	036	2193	9286	9286	9286	9285	3219	2193	0.36	036
40	CO2 Beguited with untake eff. (kg/br)	1323	1323	1323	5.291	2,143	2,143	2,193	2,193	7,936	5.291	1323	1323
42	CO2 Reg (m3/br)	362	962	362	3,850	7 700	7 700	7 700	7 700	5 775	3.850	362	362
43	Flue Gas Reg. (m3mr)	9.625	9.625	9.625	38,498	76,997	76.997	76.997	76.997	57.747	38,498	9.625	9.625
44	Flue Gas Reg. (#3/min)	5,665	5,665	5,665	22,659	45,318	45,318	45,318	45,318	33,989	22,659	5,665	5,665
45													
46	Daily			40			10	10.177			40	A.777	
47	Biomass produced (kg/d)	2,000	8,072	18,447	25,905	31,334	42,455	42,455	31,334	25,905	18,447	8,072	2,000
48	Cineeueu minus recijcled C and WWC (kgrdaj CO2 Required with untake off. (kgrdaj	, ,	917	4,320	8,133	10,463	15,307	15,246	10,379 51,254	8,063	4,829	343	0
50	CO2 Reguled with uptake err. (kgru)	0	2,060	1264	2 087	2.687	3 9 2 9	3.913	2,664	2 070	1239	1,032	0
51	Flue Gas Beg. (m3/hr)	ŏ	1.071	12.641	20.875	26.870	39,287	39,132	26.639	20.696	12.394	879	ŏ
52	Flue Gas Reg. (#3/min)	Ó	630	7,440	12,286	15,815	23,123	23,032	15,679	12,181	7,295	517	Ó
53													
- 54	Parasitic Energy												
55	Water pumping (filling HBP) (kWh/d)	1,560	1,574	1,599	1,617	1,630	1,656	1,656	1,630	1,617	1,599	1,574	1,560
66	HEP mung (kWh/d)	10,196	10,196	10,196	10,196	10,196	10,196	10,196	10,196	10,196	10,196	10,196	10,196
59	Primary Studge pumping (kh/b/d)	1,065	994	994	1,392	2,202	2,639	2,639	2,202	1,392	1,703	994	1,060
59	Elovers for Elue das (k Whid)	304	138	1629	2 690	3462	5.062	5.042	3 4 3 2	2.667	1597	113	004
60	Setted algae pumping (2 times) (k Whid)	44	178	406	570	690	935	935	690	570	406	178	44
61	Total Energy Consumption (kWh/d)	13,849	14,371	16,517	18,049	19,164	21,466	21,446	19,134	18,026	16,485	14,346	13,849
62	Total Energy Consumption (kWh/month)	415,474	431,121	495,503	541,461	574,921	643,990	643,391	574,030	540,771	494,550	430,380	415,474
63	Value (\$/day)	\$ 1,385	\$ 1,437	\$ 1,652	\$ 1,805	\$ 1,916	\$ 2,147	\$ 2,145	\$ 1,913	\$ 1,803	\$ 1,649	\$ 1,435	\$ 1,385
64	Value (\$rmonth)	\$ 41,547	\$ 43,112	\$ 49,550	\$ 54,146	\$ 57,492	\$ 64,399	\$ 64,339	\$ 57,403	\$ 54,077	\$ 49,455	\$ 43,038	\$ 41,547
65	Table Frances Desidenced (b)(b) (marsh)	E00.007	202.041	1040.000	1000 550	1400.050	1000 447	1000 447	1400.050	1000 550	1040 200	707.04	F00.007
00	Yalue of Total Energy Produced (KWhrmonth)	503,637	707,811 ★ 70,791	046,263	1,283,008	466,608	1,623,447	1,823,447	466,658	1,289,558	046,263	* 707,811	\$ 509,697
68	Net Energy Produced (kWh/month)	94 222	276,690	550,766	× 120,300 748,097	891,737	1 185,457	1186.057	 140,000 892,628 	748 788	551719	277.431	

100 ha 0il+Biogas+ wastewater treatment				
preliminary cost estimate				
Total capital cost = $$23$ M	illion			
Financial summary	·			
Total revenue from electricity (\$/yr)	\$800,000			
Total operating expenses (\$/yr)	(\$2,100,000)			
Bond repayment (\$/yr) (\$2,000,000)				
Total cash outlay requirements (\$/yr)	(\$3,300,000)			
Total oil produced (bbl/yr) 10,100				
Total cash outlay per barrel (\$/bbl)	(\$327)			
Not Included: income, property taxes, <u>wastewater treatment</u> <u>revenues,</u> depreciation, corporate overheads, license fees				

LCA GREENHOUSE GAS EMISSI	IONS & C	OSTS OF	ALGAE BIO	DIESEL
Diesel trucks: algae vs. o Summary LCA Study by on Benemann & Oswald, productivity of 55 mt/ha-	canola <mark>Campb</mark> ,1996, " yr, 40%	biodies ell et a conser o oil, ~2	el/fossil <mark>I., 2009</mark> k vative" c 0,000 l/h	diesel based case: a-yr
Emissions & Costs for moving <u>1 mt 1 km by diesel truck</u>	Algae 100%CO2	Algae Flue Gas	Canola biodiesel	Diesel Fossil
GHG CO ₂ e emissions g/t-mi	-22.7	-15.2	95.3	108.8
Cost, feedstock or algae ops	0.015	0.013	0.035	0.026
Cost, conversion & dist	0.006	0.007	0.007	0.003
Cost, capital	0.014	0.019	0.001	0.000
TOTAL COST \$/mt-km	0.044	0.039	0.042	0.038
CO ₂ e: total greenhouse gase	es, inclu	des CH ₄	and N ₂ O.	Costs

do not include taxes. (Costs are relative: not adjusted from AUS\$, cost of oil, etc.). For 100% CO_2 case, purchased CO_2

- 1. Historical development of microalgae technology
- 2. Current commercial reality of microalgae production
- 3. Scale-up: closed photobioreactors vs. open ponds
- 4. Harvesting: wastewater treatment by microalgae
- 5. Productivity: reality, fantasy and genetic engineering
- 6. Economics: projected for microalgae biofuels
- 7. Conclusions: just a few more R&D challenges: the algae, the grazers, the climate, the, oh yes the oil!

The Energy Journal, Vol. 1, No.1, 1980

Biomass Energy Economics

John R. Benemann*

... an economy based only on solar energy would have to rely on the natural costless way of harnessing that energy, which means an intensive utilization of wood ... and possibly, but at this moment, debatably, of algae.

N. Georgescu-Roegen, 1976

SO, WHY BOTHER WITH ALGAE BIOFUELS?

Algae R&D faster. Why? One week is like a crop year.

Algae R&D cheaper. Why? Smaller scales, fewer variables

Algae R&D simpler. Why? More tractable organisms (?)

Algae deployment could be much faster if really needed

Algae have multiple benefits. What? wastewater treatment, protein and other co-products

Algae can use water (e.g. seawater) and land unsuitable for crop production.

Why we need all biofue	els: Global Warming!
GWYNNE DYER	(from the book jacket): <i>"the geopolitical</i> <i>conflicts that may unfold</i> <i>over the next few</i>
	decades [are] almost too fearsome to absorb
CLUMATE WARS	[among] the scientists themselves, there is a palpable sense of panic, something confirmed by Dyer in his interviews conducted around the world."

